日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀下面的材料:

          小明遇到一個(gè)問(wèn)題:如圖(1),在□ABCD中,點(diǎn)E是邊BC的中點(diǎn),點(diǎn)F是線(xiàn)段AE上一點(diǎn),BF的延長(zhǎng)線(xiàn)交射線(xiàn)CD于點(diǎn)G.  如果,求的值.

          他的做法是:過(guò)點(diǎn)E作EH∥AB交BG于點(diǎn)H,則可以得到△BAF∽△HEF.

          請(qǐng)你回答:(1)AB和EH的數(shù)量關(guān)系為     ,CG和EH的數(shù)量關(guān)系為     ,的值為     .

          (2)如圖(2),在原題的其他條件不變的情況下,如果,那么的值為     (用含a的代數(shù)式表示).

          (3)請(qǐng)你參考小明的方法繼續(xù)探究:如圖(3),在四邊形ABCD中,DC∥AB,點(diǎn)E是BC延長(zhǎng)線(xiàn)上一點(diǎn),AE和BD相交于點(diǎn)F. 如果,那么的值為     (用含m,n的代數(shù)式表示).

           

           

          【答案】

          (1),, ;(2);(3)

          【解析】

          試題分析:本題的設(shè)計(jì)獨(dú)具匠心:由平行四邊形中的一個(gè)特殊的例子出發(fā)(第1問(wèn)),推廣到平行四邊形中的一般情形(第2問(wèn)),最后再通過(guò)類(lèi)比、轉(zhuǎn)化到梯形中去(第3問(wèn)).各種圖形雖然形式不一,但運(yùn)用的解題思想與解題方法卻是一以貫之:即通過(guò)構(gòu)造相似三角形,得到線(xiàn)段之間的比例關(guān)系,這個(gè)比例關(guān)系均統(tǒng)一用同一條線(xiàn)段來(lái)表達(dá),這樣就可以方便地求出線(xiàn)段的比值.本題體現(xiàn)了初中數(shù)學(xué)的類(lèi)比、轉(zhuǎn)化、從特殊到一般等思想方法,有利于學(xué)生觸類(lèi)旁通、舉一反三.(1)根據(jù)△BAF∽△HEF,可知兩三角形的相似比是3:1,所以AB=3EH;由EH∥AB、CD∥AB可得EH∥CD,故△BCG∽△BEH,而E為BC的中點(diǎn),所以?xún)扇切蔚南嗨票葹?:1,所以CG=2EH;由平行四邊形對(duì)邊相等得,AB=CD,所以.

          根據(jù)(1)的分析,易得.(3)本問(wèn)體現(xiàn)“類(lèi)比”與“轉(zhuǎn)化”的情形,將(1)(2)問(wèn)中的解題方法推廣轉(zhuǎn)化到梯形中,如下圖所示.

          試題解析:

          解:(1)依題意,過(guò)點(diǎn)E作EH∥AB交BG于點(diǎn)H,如右圖1所示.則有△ABF∽△HEF,

          ,即AB=3EH

          ∵EH∥AB、CD∥AB可得EH∥CD,

          ∴△BCG∽△BEH,

          又∵E為BC的中點(diǎn),

          ∴CG=2EH;

          故填空依次為:,, .

          同理根據(jù)(1)可以發(fā)現(xiàn):,

          故填空為 .

          如上圖所示,過(guò)點(diǎn)E作EH//AB交BD的延長(zhǎng)線(xiàn)于點(diǎn)H,則有EH//AB//CD

          ∵EH//CD

          ∴△BCD∽△BEF,

          ,即

          又∵

          ∵EH//AB

          ∴△ABF∽△EHF

          故填空為:.

          考點(diǎn):1、相似形綜合題;2、平行四邊形的性質(zhì);3、梯形;4、相似三角形的判定與性質(zhì).

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          閱讀下面的材料:
          小明在學(xué)習(xí)中遇到這樣一個(gè)問(wèn)題:若1≤x≤m,求二次函數(shù)y=x2-6x+7的最大值.他畫(huà)圖研究后發(fā)現(xiàn),x=1和x=5時(shí)的函數(shù)值相等,于是他認(rèn)為需要對(duì)m進(jìn)行分類(lèi)討論.
          他的解答過(guò)程如下:
          ∵二次函數(shù)y=x2-6x+7的對(duì)稱(chēng)軸為直線(xiàn)x=3,
          ∴由對(duì)稱(chēng)性可知,x=1和x=5時(shí)的函數(shù)值相等.
          ∴若1≤m<5,則x=1時(shí),y的最大值為2;
          若m≥5,則x=m時(shí),y的最大值為m2-6m+7.
          請(qǐng)你參考小明的思路,解答下列問(wèn)題:
          (1)當(dāng)-2≤x≤4時(shí),二次函數(shù)y=2x2+4x+1的最大值為
          49
          49
          ;
          (2)若p≤x≤2,求二次函數(shù)y=2x2+4x+1的最大值;
          (3)若t≤x≤t+2時(shí),二次函數(shù)y=2x2+4x+1的最大值為31,則t的值為
          1或-5
          1或-5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          閱讀下面的材料:
          小明在研究中心對(duì)稱(chēng)問(wèn)題時(shí)發(fā)現(xiàn):
          如圖1,當(dāng)點(diǎn)A1為旋轉(zhuǎn)中心時(shí),點(diǎn)P繞著點(diǎn)A1旋轉(zhuǎn)180°得到P1點(diǎn),點(diǎn)P1再繞著點(diǎn)A1旋轉(zhuǎn)180°得到P2點(diǎn),這時(shí)點(diǎn)P與點(diǎn)P2重合.
          如圖2,當(dāng)點(diǎn)A1、A2為旋轉(zhuǎn)中心時(shí),點(diǎn)P繞著點(diǎn)A1旋轉(zhuǎn)180°得到P1點(diǎn),點(diǎn)P1繞著點(diǎn)A2旋轉(zhuǎn)180°得到P2點(diǎn),點(diǎn)P2繞著點(diǎn)A1旋轉(zhuǎn)180°得到P3點(diǎn),點(diǎn)P3繞著點(diǎn)A2旋轉(zhuǎn)180°得到P4點(diǎn),小明發(fā)現(xiàn)P、P4兩點(diǎn)關(guān)于點(diǎn)P2中心對(duì)稱(chēng).
          精英家教網(wǎng)精英家教網(wǎng)
          (1)請(qǐng)?jiān)趫D2中畫(huà)出點(diǎn)P3、P4,小明在證明P、P4兩點(diǎn)關(guān)于點(diǎn)P2中心對(duì)稱(chēng)時(shí),除了說(shuō)明P、P2、P4三點(diǎn)共線(xiàn)之外,還需證明
           
          ;
          (2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)A1(0,3)、A2(-2,0)、A2(2,0)為旋轉(zhuǎn)中心時(shí),點(diǎn)P(0,4)繞著點(diǎn)A1旋轉(zhuǎn)180°得到P1點(diǎn);點(diǎn)P1繞著點(diǎn)A2旋轉(zhuǎn)180°得到P2點(diǎn);點(diǎn)P2繞著點(diǎn)A3旋轉(zhuǎn)180°得到P3點(diǎn);點(diǎn)P3繞著點(diǎn)A1旋轉(zhuǎn)180°得到點(diǎn)p4點(diǎn)….繼續(xù)如此操作若干次得到點(diǎn)P5、P6、…,則點(diǎn)P2的坐標(biāo)為
           
          ,點(diǎn)P2017的坐標(biāo)為
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2013屆北京市西城區(qū)(北區(qū))九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

          閱讀下面的材料:
          小明在學(xué)習(xí)中遇到這樣一個(gè)問(wèn)題:若1≤xm,求二次函數(shù)的最大值.他畫(huà)圖研究后發(fā)現(xiàn),時(shí)的函數(shù)值相等,于是他認(rèn)為需要對(duì)進(jìn)行分類(lèi)討論.
          他的解答過(guò)程如下:
          ∵二次函數(shù)的對(duì)稱(chēng)軸為直線(xiàn),
          ∴由對(duì)稱(chēng)性可知,時(shí)的函數(shù)值相等.
          ∴若1≤m<5,則時(shí),的最大值為2;
          m≥5,則時(shí),的最大值為

          請(qǐng)你參考小明的思路,解答下列問(wèn)題:
          (1)當(dāng)x≤4時(shí),二次函數(shù)的最大值為_(kāi)______;
          (2)若px≤2,求二次函數(shù)的最大值;
          (3)若txt+2時(shí),二次函數(shù)的最大值為31,則的值為_(kāi)______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省九年級(jí)上學(xué)期期末質(zhì)量抽測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

          閱讀下面的材料:

          小明遇到一個(gè)問(wèn)題:如圖(1,□ABCD,點(diǎn)E是邊BC的中點(diǎn),點(diǎn)F是線(xiàn)段AE上一點(diǎn),BF的延長(zhǎng)線(xiàn)交射線(xiàn)CD于點(diǎn)G.如果,的值.

          他的做法是:過(guò)點(diǎn)EEHABBG于點(diǎn)H,則可以得到BAF∽△HEF.

          請(qǐng)你回答:(1ABEH的數(shù)量關(guān)系為???? ,CGEH的數(shù)量關(guān)系為???? ,的值為???? .

          2)如圖(2,在原題的其他條件不變的情況下,如果,那么的值為???? (用含a的代數(shù)式表示).

          3)請(qǐng)你參考小明的方法繼續(xù)探究:如圖(3,在四邊形ABCD,DCAB,點(diǎn)EBC延長(zhǎng)線(xiàn)上一點(diǎn),AEBD相交于點(diǎn)F. 如果,那么的值為???? (用含m,n的代數(shù)式表示).

           

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測(cè)評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題

          閱讀下面的材料:

          小明在研究中心對(duì)稱(chēng)問(wèn)題時(shí)發(fā)現(xiàn):

          如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.

          如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱(chēng).

          (1)請(qǐng)?jiān)趫D2中畫(huà)出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱(chēng)時(shí),除了說(shuō)明P、三點(diǎn)共線(xiàn)之外,還需證明;

          (2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案