
解:(1)作CE⊥OA于點(diǎn)E,BF⊥OA于F,
∴∠CEO=∠BFA=90°,CE∥BF,
∴OA∥BC,
∴四邊形ECBF是平行四邊形,
∴CE=BF.
∵四邊形OABC是等腰梯形,
∴OC=AB,
∴△OEC≌△AFB,
∴OE=AF,
∵A(10,0),B(8,6),
∴0A=10,OF=8,BF=6,
∴OE=2
∴C(2,6)
∵直線(xiàn)AC過(guò)點(diǎn)A(10,0),C(2,6),
設(shè)直線(xiàn)AC解析式為:y=kx+b(k≠0)
根據(jù)題意得:

解得:k=

,b=

,
∴直線(xiàn)AC:y=

x+

(2)將x=4代入上述解析式,y=

,即PH=

∵Q點(diǎn)在直線(xiàn)AC上,設(shè)Q點(diǎn)坐標(biāo)為(t,

t+

)
由題知:

PH•|t-4|=

×

OA•|y
C|,



解得t=

或

,
即滿(mǎn)足題意的Q點(diǎn)有兩個(gè),分別是Q
1(

,

)或Q
2(

,

)
(3)存在滿(mǎn)足題意的M點(diǎn)和N點(diǎn).
設(shè)M點(diǎn)坐標(biāo)為(a,

a+

),當(dāng)a>10時(shí),無(wú)滿(mǎn)足題意的點(diǎn);
①若∠MNH=90°,則MN=HN,即

a+

=|a-4|,
解得a=

或-14,
此時(shí)M點(diǎn)坐標(biāo)為(

,

)或(-14,18); N點(diǎn)的坐標(biāo)為(

,0)或(-14,0);
②當(dāng)∠HMN=90°,則MN=MH,作MM′⊥OA于M′.即

a+

=|a-4|,
解得a=

或-14,
此時(shí)M點(diǎn)坐標(biāo)為(

,

)或(-14,18); N點(diǎn)的坐標(biāo)為(

,0)或(-32,0).
綜上,當(dāng)M點(diǎn)坐標(biāo)為(

,

)時(shí),N點(diǎn)坐標(biāo)為N
1(

,0)或N
2(

,0);
當(dāng)M點(diǎn)坐標(biāo)為(-14,18)時(shí),N點(diǎn)坐標(biāo)為N
3(-14,0)或N
4(-32,0).
分析:(1)作CE⊥OA于點(diǎn)E,BF⊥OA于F,由條件可以得出△OEC≌△AFB,得出OE=AF,由A(10,0),B(8,6)可以得出0A=10,OF=8,BF=6,進(jìn)而就可以求出C點(diǎn)的坐標(biāo),再利用待定系數(shù)法就可以求出AC的解析式.
(2)x=4可以求出P點(diǎn)坐標(biāo),由Q點(diǎn)在AC上,設(shè)出Q的坐標(biāo),可以表示出△PHQ和△AOC的面積,由題意的面積關(guān)系建立等量關(guān)系就可以求出結(jié)論.
(3)由條件當(dāng)∠MNH=90°或∠HMN=90°,則過(guò)M作MM′⊥x軸交于M′點(diǎn),設(shè)出M的坐標(biāo),根據(jù)等腰直角三角形的性質(zhì)建立等量關(guān)系就可以求出其M的坐標(biāo)然后由M的坐標(biāo)就可以求出對(duì)應(yīng)的N的坐標(biāo).
點(diǎn)評(píng):本題考查待定系數(shù)法求一次函數(shù)的解析式,點(diǎn)的坐標(biāo),全等三角形判定及性質(zhì),等腰三角形的性質(zhì),三角形的面積,等腰直角三角形的性質(zhì).