日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BP、CP的延長線分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BDCF相交于點(diǎn)H.給出下列結(jié)論,其中正確結(jié)論的個數(shù)是(

          ①△BDE∽△DPE;②;③;④tanDBE=.

          A.4B.3C.2D.1

          【答案】B

          【解析】

          根據(jù)等邊三角形的性質(zhì)和正方形的性質(zhì),得到∠PCD=30°,于是得到∠CPD=CDP=75°,證得∠EDP=PBD=15°,于是得到BDE∽△DPE,故①正確由于∠FDP=PBD,∠DFP=BPC=60°,推出DFP∽△BPH,得到故②錯誤;由于∠PDH=PCD=30°,∠DPH=DPC,推出DPH∽△CPD,得到,PB=CD,等量代換得到PD2=PHPB,故③正確;過PPMCD,PNBC,設(shè)正方形ABCD的邊長是4,BPC為正三角形,于是得到∠PBC=PCB=60°,PB=PC=BC=CD=4,求得∠PCD=30°,根據(jù)三角函數(shù)的定義得到CM=PN=PBsin60°=4×,PM=PCsin30°=2,由平行線的性質(zhì)得到∠EDP=DPM,等量代換得到∠DBE=DPM,于是求得tanDBE=tanDPM=,故④正確.

          ∵△BPC是等邊三角形,
          BP=PC=BC,∠PBC=PCB=BPC=60°,
          在正方形ABCD中,
          AB=BC=CD,∠A=ADC=BCD=90°
          ∴∠ABE=DCF=30°


          ∴∠CPD=CDP=75°,∴∠PDE=15°
          ∵∠PBD=PBC-HBC=60°-45°=15°,
          ∴∠EBD=EDP,
          ∵∠DEP=DEB,
          ∴△BDE∽△DPE;故①正確;
          PC=CD,∠PCD=30°,
          ∴∠PDC=75°
          ∴∠FDP=15°,
          ∵∠DBA=45°,
          ∴∠PBD=15°
          ∴∠FDP=PBD,
          ∵∠DFP=BPC=60°,
          ∴△DFP∽△BPH,
          ,故②錯誤;
          ∵∠PDH=PCD=30°,
          ∵∠DPH=DPC
          ∴△DPH∽△CDP,
          ,
          PD2=PHCD,


          PB=CD,
          PD2=PHPB,故③正確;
          如圖,過PPMCD,PNBC,
          設(shè)正方形ABCD的邊長是4,BPC為正三角形,
          ∴∠PBC=PCB=60°,PB=PC=BC=CD=4
          ∴∠PCD=30°
          CM=PN=PBsin60°=4× ,PM=PCsin30°=2
          DEPM,
          ∴∠EDP=DPM,
          ∴∠DBE=DPM
          tanDBE=tanDPM= ,故④正確;
          故選:B

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成兩個三角形,如果這兩個三角形相似但不全等,我們就把這條對角線叫做這個四邊形的相似對角線,在四邊形ABCD中,對角線BD是它的相似對角線,∠ABC=70°,BD平分∠ABC,那么∠ADC=____________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】五一假期,黔西南州某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購買了前往各地的車票,如圖所示是用來制作完整的車票種類和相應(yīng)數(shù)量的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖回答下列問題:

          1)若去丁地的車票占全部車票的10%,請求出去丁地的車票數(shù)量,并補(bǔ)全統(tǒng)計圖(如圖所示).

          2)若公司采用隨機(jī)抽取的方式發(fā)車票,小胡先從所有的車票中隨機(jī)抽取一張(所有車票的形狀、大小、質(zhì)地完全相同、均勻),那么員工小胡抽到去甲地的車票的概率是多少?

          3)若有一張車票,小王和小李都想去,決定采取摸球的方式確定,具體規(guī)則:每人從不透明袋子中摸出分別標(biāo)有1、2、3、4的四個球中摸出一球(球除數(shù)字不同外完全相同),并放回讓另一人摸,若小王摸得的數(shù)字比小李的小,車票給小王,否則給小李.試用列表法或畫樹狀圖的方法分析這個規(guī)則對雙方是否公平?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】給定關(guān)于x的二次函數(shù)ykx24kx+3k0),

          1)當(dāng)該二次函數(shù)與x軸只有一個公共點(diǎn)時,求k的值;

          2)當(dāng)該二次函數(shù)與x軸有2個公共點(diǎn)時,設(shè)這兩個公共點(diǎn)為A、B,已知AB2,求k的值;

          3)由于k的變化,該二次函數(shù)的圖象性質(zhì)也隨之變化,但也有不會變化的性質(zhì),某數(shù)學(xué)學(xué)習(xí)小組在探究時得出以下結(jié)論:

          y軸的交點(diǎn)不變;對稱軸不變;一定經(jīng)過兩個定點(diǎn);

          請判斷以上結(jié)論是否正確,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線ABx軸上的點(diǎn)A2,0),且與拋物線yax2相交于BC兩點(diǎn),B點(diǎn)坐標(biāo)為(11).

          1)求直線AB和拋物線的函數(shù)關(guān)系式;

          2)在拋物線上是否存在一點(diǎn)D,使得SOADSOBC?若不存在,請說明理由;若存在,請求出點(diǎn)D的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P ACPC,∠COB2PCB

          1)求證:PC是⊙O的切線;

          2)求證:BCAB;

          3)點(diǎn)M是弧AB的中點(diǎn),CMAB于點(diǎn)N,若AB8,求MN·MC的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某種商品的標(biāo)價為600/件,經(jīng)過兩次降價后的價格為486/件,并且兩次降價的百分率相同.

          (1)求該種商品每次降價的百分率;

          (2)若該種商品進(jìn)價為460/件,兩次降價共售出此種商品100件,為使兩次降價銷售的總利潤不少于3788.問第一次降價后至少要售出該種商品多少件?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線y=﹣x+4與坐標(biāo)軸分別交于點(diǎn)AB,與直線yx交于點(diǎn)C.在線段OA上,動點(diǎn)Q以每秒1個單位長度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動,同時動點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)O做勻速運(yùn)動,當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動時,另一點(diǎn)也停止運(yùn)動.分別過點(diǎn)P、Qx軸的垂線,交直線AB、OC于點(diǎn)E、F,連接EF.若運(yùn)動時間為t秒,在運(yùn)動過程中四邊形PEFQ總為矩形(點(diǎn)P、Q重合除外).

          1)求點(diǎn)P運(yùn)動的速度是多少?

          2)當(dāng)t為多少秒時,矩形PEFQ為正方形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知:拋物線yax+1)(x3)與x軸相交于A、B兩點(diǎn),與y軸的交于點(diǎn)C0,﹣3).

          1)求拋物線的解析式的一般式.

          2)若拋物線上有一點(diǎn)P,滿足∠ACO=∠PCB,求P點(diǎn)坐標(biāo).

          3)直線lykxk+2與拋物線交于E、F兩點(diǎn),當(dāng)點(diǎn)B到直線l的距離最大時,求BEF的面積.

          查看答案和解析>>

          同步練習(xí)冊答案