日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,∠ABC=90°,BC=AB,P是內(nèi)一點,且PA=1,PB=2,PC=3,試求∠APB的度數(shù).

          解:∵∠ABC=90°,BC=AB,
          ∴把△PBC繞B點逆時針旋轉(zhuǎn)90°得到△DBA,如圖,
          ∴BD=BP=2,AD=PC=3,∠PBD=90°,
          ∴△PBD為等腰直角三角形,
          ∴PD=PB=2,∠DPB=45°,
          在△APD中,AP=1,PD=2,AD=3,
          ∵12+(22=32,
          ∴AP2+PD2=AD2,
          ∴△APD為直角三角形,
          ∴∠APD=90°,
          ∴∠APB=∠APD+∠DPB=90°+45°=135°.
          分析:由于∠ABC=90°,BC=AB,則可以把△PBC繞B點逆時針旋轉(zhuǎn)90°得到△DBA,根據(jù)旋轉(zhuǎn)的性質(zhì)得到BD=BP=2,AD=PC=3,∠PBD=90°,得到△PBD為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得到PD=PB=2,∠DPB=45°,在△APD中易得AP2+PD2=AD2,根據(jù)勾股定理的逆定理得到△APD為直角三角形,然后利用∠APB=∠APD+∠DPB計算即可.
          點評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了等腰直角三角形的性質(zhì)以及勾股定理的逆定理.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點0為AC的中點,OE⊥AB于點E,OE=
          32
          ,以點0為圓心,OA為半徑的圓交AB于點F.
          (1)求AF的長;
          (2)連結(jié)FC,求tan∠FCB的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點D,將△ADC繞點A順時針旋轉(zhuǎn),使AC與AB重合,點D落在點E處,AE的延長線交CB的延長線于點M,EB的延長線交AD的延長線于點N.
          求證:AM=AN.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在△ABC中,AB=AC,把△ABC繞著點A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點D,B1C1交AC于點E.求證:AD=AE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作?ABDE,連接AD,EC.
          (1)求證:△ADC≌△ECD;
          (2)若BD=CD,求證:四邊形ADCE是矩形.

          查看答案和解析>>

          同步練習(xí)冊答案