日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四邊形ABCD是菱形,AB=4,且∠ABC=ABE=60°,G為對(duì)角線BD(不含B點(diǎn))上任意一點(diǎn),將ABG繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到EBF,當(dāng)AG+BG+CG取最小值時(shí)EF的長(zhǎng)( 。

          A.B.C.D.

          【答案】D

          【解析】

          根據(jù)兩點(diǎn)之間線段最短,當(dāng)G點(diǎn)位于BDCE的交點(diǎn)處時(shí),AG+BG+CG的值最小,即等于EC的長(zhǎng).

          解:如圖,

          ∵將ABG繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到EBF,

          BE=AB=BCBF=BG,EF=AG,

          ∴△BFG是等邊三角形.

          BF=BG=FG,.

          AG+BG+CG=FE+GF+CG

          根據(jù)兩點(diǎn)之間線段最短,

          ∴當(dāng)G點(diǎn)位于BDCE的交點(diǎn)處時(shí),AG+BG+CG的值最小,即等于EC的長(zhǎng),

          過(guò)E點(diǎn)作EFBCCB的延長(zhǎng)線于F

          ∴∠EBF=180°-120°=60°,

          BC=4,

          BF=2EF=2,在RtEFC中,

          EF2+FC2=EC2,

          EC=4

          ∵∠CBE=120°

          ∴∠BEF=30°,

          ∵∠EBF=ABG=30°

          EF=BF=FG,

          EF=CE=

          故選:D

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個(gè)交點(diǎn);②對(duì)于任意實(shí)數(shù)x,a(-x+52+b(-x+5)=ax-32+bx-3)都成立.

          1)求二次函數(shù)y=ax2+bx的解析式;

          2)若當(dāng)-2xrr0)時(shí),恰有ty1.5r成立,求tr的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】作圖題:

          1)如圖①,已知:.求作:射線,使平分(要求:尺規(guī)作圖,不寫(xiě)作法,但需保留作圖痕跡)

          2)題(1)中作圖的依據(jù)是全等三角形判定方法中的__________

          3)在圖②中作出,使它與關(guān)于軸對(duì)稱.

          4)在圖②中的軸上找到一點(diǎn),使的周長(zhǎng)最小.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,點(diǎn)AB、C在同一直線上,ABD,△BCE都是等邊三角形.

          (1)求證:AE=CD;

          (2)若M,N分別是AECD的中點(diǎn),試判斷BMN的形狀,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,K是正方形ABCD內(nèi)一點(diǎn),以AK為一邊作正方形AKLM,使L,M,DAK的同旁,連接BKDM,試用旋轉(zhuǎn)的思想說(shuō)明線段BKDM的關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在正方形ABCD中,E、F是對(duì)角線BD上兩點(diǎn),且∠EAF=45°,將ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到ABQ,連接EQ,求證:

          (1)EA是∠QED的平分線;

          (2)EF2=BE2+DF2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FCAB交于點(diǎn)H,且A0,4),C8,0).

          1)當(dāng)α=60°時(shí),CBD的形狀是______;

          2)設(shè)AH=m

          ①連接HD,當(dāng)CHD的面積等于10時(shí),求m的值;

          ②當(dāng)α90°旋轉(zhuǎn)過(guò)程中,連接OH,當(dāng)OHC為等腰三角形時(shí),請(qǐng)直接寫(xiě)出m的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(1)如圖①是一個(gè)重要公式的幾何解釋.請(qǐng)你寫(xiě)出這個(gè)公式;

          (2)如圖②,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B、C、D三點(diǎn)在一條直線上.試證明∠ACE=90°;

          (3)伽菲爾德(G a rfield,1881年任美國(guó)第20屆總統(tǒng))利用(1)中的公式和圖②證明了勾股定理(1876年4月1日,發(fā)表在《新英格蘭教育日志》上),現(xiàn)請(qǐng)你嘗試該證明過(guò)程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在同一平面內(nèi),有相互平行的三條直線a,b,c,且a,b之間的距離為1b,c之間的距離是2,若等腰RtABC的三個(gè)頂點(diǎn)恰好各在這三條平行直線上,如圖所示,則△ABC的面積是_____

          查看答案和解析>>

          同步練習(xí)冊(cè)答案