日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為a.直線ybx+cx軸于E,交y軸于F,且ab、c分別滿足﹣(a420,c+8.

          1)求直線ybx+c的解析式并直接寫出正方形OABC的對角線的交點D的坐標(biāo);

          2)直線ybx+c沿x軸正方向以每秒移動1個單位長度的速度平移,設(shè)平移的時間為t秒,問是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請求出t的值;若不存在,請說明理由;

          3)點P為正方形OABC的對角線AC上的動點(端點A、C除外),PMPO,交直線ABM,求的值.

          【答案】1y=2x+8,D2,2);(2)存在,5;(3.

          【解析】

          試題(1)利用非負(fù)數(shù)的性質(zhì)求出a,bc的值,進而確定出直線y=bx+c,得到正方形的邊長,即可確定出D坐標(biāo);

          2)存在,理由為:對于直線y=2x+8,令y=0求出x的值,確定出E坐標(biāo),根據(jù)題意得:當(dāng)直線EF平移到過D點時正好平分正方形AOBC的面積,設(shè)平移后的直線方程為y=2x+t,將D坐標(biāo)代入求出b的值,確定出平移后直線解析式,進而確定出此直線與x軸的交點,從而求出平移距離,得到t的值;

          P點作PQ∥OA,PH∥CO,交CO、ABN、Q,交CB、OAG、H,利用同角的余角相等得到一對角相等,再由一對直角相等,利用角平分線定理得到PH=PQ,利用AAS得到三角形OPH與三角形MPQ全等,得到OH=QM,根據(jù)四邊形CNPG為正方形,得到PG=BQ=CN,由三角形CGP為等腰直角三角形得到CP=GP=BM,即可求出所求式子的值.

          試題解析:(1∵-a-42≥0,

          ∴a=4,b=2c=8,

          直線y=bx+c的解析式為:y=2x+8

          正方形OABC的對角線的交點D,且正方形邊長為4

          ∴D2,2);

          2)存在,理由為:

          對于直線y=2x+8

          當(dāng)y=0時,x=-4

          ∴E點的坐標(biāo)為(-4,0),

          根據(jù)題意得:當(dāng)直線EF平移到過D點時正好平分正方形AOBC的面積,

          設(shè)平移后的直線為y=2x+t

          代入D點坐標(biāo)(2,2),

          得:2=4+t,即t=-2,

          平移后的直線方程為y=2x-2,

          y=0,得到x=1,

          此時直線和x軸的交點坐標(biāo)為(1,0),平移的距離為1--4=5

          t=5秒;

          3)過P點作PQ∥OA,PH∥CO,交CO、ABN、Q,交CB、OAG、H,

          ∵∠OPM=∠HPQ=90°,

          ∴∠OPH+∠HPM=90°,∠HPM+∠MPQ=90°,

          ∴∠OPH=∠MPQ,

          ∵AC∠BAO平分線,且PH⊥OAPQ⊥AB,

          ∴PH=PQ,

          △OPH△MPQ中,

          ∴△OPH≌△MPQAAS),

          ∴OH=QM,

          四邊形CNPG為正方形,

          ∴PG=BQ=CN,

          ∴CP=PG=BM,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】口袋中裝有四個大小完全相同的小球,把它們分別標(biāo)號1,2,3,4,從中隨機摸出一個球,記下數(shù)字后放回,再從中隨機摸出一個球,利用樹狀圖或者表格求出兩次摸到的小球數(shù)和等于4的概率.

          【答案】 .

          【解析】試題分析:

          根據(jù)題意列表如下,由表可以得到所有的等可能結(jié)果,再求出所有結(jié)果中,兩次所摸到小球的數(shù)字之和為4的次數(shù)即可計算得到所求概率.

          試題解析

          列表如下:

          1

          2

          3

          4

          1

          (1,1)

          (1,2)

          (1,3)

          (1,4)

          2

          (2,1)

          (2,2)

          (2,3)

          (2,4)

          3

          (3,1)

          (3,2)

          (3,3)

          (3,4)

          4

          (4,1)

          (4,2)

          (4,3)

          (4,4)

          由表可知,共有16種等可能事件,其中兩次摸到的小球數(shù)字之和等于4的有(3,1)、(2,2)和(1,3),共計3

          P(兩次摸到小球的數(shù)字之和等于4=.

          型】解答
          結(jié)束】
          23

          【題目】小亮同學(xué)想利用影長測量學(xué)校旗桿AB的高度,如圖,他在某一時刻立1米長的標(biāo)桿測得其影長為1.2米,同時旗桿的投影一部分在地面上BD處,另一部分在某一建筑的墻上CD處,分別測得其長度為9.6米和2米,求旗桿AB的高度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第一象限C,D兩點,坐標(biāo)軸交于A、B兩點,連結(jié)OC,OD(O是坐標(biāo)原點).

          (1)利用圖中條件,求反比例函數(shù)的解析式和m的值;

          (2)求DOC的面積.

          (3)雙曲線上是否存在一點P,使得POC和POD的面積相等?若存在,給出證明并求出點P的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小王周末騎電動車從家里出發(fā)去商場買東西,當(dāng)他騎了一段路時,想起要買一本書,于是原路返回到剛經(jīng)過的新華書店,買到書后繼續(xù)前往商場,如圖是他離家的距離(米)與時間(分鐘)之間的關(guān)系示意圖,請根據(jù)圖中提供的信息回答下列問題:

          1)在此變化過程中,自變量是 ,因變量是

          2)小王在新華書店停留了多長時間?

          3)買到書后,小王從新華書店到商場的騎車速度是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】王老師家買了一套新房,其結(jié)構(gòu)如圖所示(單位:m)他打算將臥室鋪上木地板,其余部分鋪上地磚

          (1)木地板和地磚分別需要多少平方米?

          (2)如果地磚的價格為每平方米x,木地板的價格為每平方米3x,那么王老師需要花多少錢?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知一紙板的形狀為正方形ABCD如圖所示.其邊長為10厘米,AD、BC與投影面β平行,AB、CD與投影面不平行,正方形在投影面β上的正投影為A1B1C1D1.若∠ABB1=45°,求投影面A1B1C1D1的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某超市銷售進價為2元的雪糕,在銷售中發(fā)現(xiàn),此商品的日銷售單價x(元)與日銷售量y(根)之間有如下關(guān)系:

          日銷售單價x(元)

          3

          4

          5

          6

          日銷售量y(根)

          40

          30

          24

          20

          1)猜測并確定yx之間的函數(shù)關(guān)系式;

          2)設(shè)此商品銷售利潤為W,求Wx的函數(shù)關(guān)系式,若物價局規(guī)定此商品最高限價為10/根,你是否能求出商品日銷售最大利潤?若能請求出,不能請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB⊙O的直徑,弦CD⊥AB于點E,且CD=24,點M⊙O上,MD經(jīng)過圓心O,聯(lián)結(jié)MB

          1)若BE=8,求⊙O的半徑;

          2)若∠DMB=∠D,求線段OE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我市某電器商場根據(jù)民眾健康需要代理銷售某種家用空氣凈化器,其進價是200/臺.經(jīng)過市場銷售后發(fā)現(xiàn)在一個月內(nèi)當(dāng)售價是400/臺時,可售出200,且售價每降低10,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300/代理銷售商每月要完成不低于450臺的銷售任務(wù)

          (1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式;

          (2)求出售價x的范圍;

          (3)商場每月銷售這種空氣凈化器所獲得的利潤為w(元),寫出w關(guān)于x的關(guān)系?當(dāng)售價x(元/臺)定為多少時利潤最大,最大是多少?

          查看答案和解析>>

          同步練習(xí)冊答案