日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是長方形, A=B=C=D=90°,ABCD,AB=CD=4,AD=BC=6,點A的坐標(biāo)為(32).動點P的運動速度為每秒a個單位長度,動點Q的運動速度為每秒b個單位長度,且.設(shè)運動時間為t,動點P、Q相遇則停止運動.

          (1) a,b的值;

          (2) 動點PQ同時從點A出發(fā),點P沿長方形ABCD的邊界逆時針方向運動,點Q沿長方形ABCD的邊界順時針方向運動,當(dāng)t為何值時P、Q兩點相遇?求出相遇時P、Q所在位置的坐標(biāo);

          (3) 動點P從點A出發(fā),同時動點Q從點D出發(fā):

          ①若點PQ均沿長方形ABCD的邊界順時針方向運動,t為何值時,PQ兩點相遇?求出相遇時P、Q所在位置的坐標(biāo);

          ②若點PQ均沿長方形ABCD的邊界逆時針方向運動,t為何值時,P、Q兩點相遇?求出相遇時P、Q所在位置的坐標(biāo).

          【答案】(1)a=1,b=2(2) ,P、Q兩點相遇,P,Q兩點的坐標(biāo)為;(3) t=6,P、Q(1,-2 ),② t=14,P、Q(1,-2 )

          【解析】

          1)由,可得,,從而可求出a,b的值;

          2)由相遇可得t+2t=(6+4)×2,求出t的值,進而求出相遇時PQ所在位置的坐標(biāo);

          3)①由相遇可得方程2t-t=6 ,求出t的值,進而求出相遇時P、Q所在位置的坐標(biāo);

          ②由相遇可得方程2t-t=14 ,求出t的值,進而求出相遇時P、Q所在位置的坐標(biāo);

          (1)

          ,,

          a=1b=2;

          (2) t+2t=(6+4)×2

          時,P、Q兩點相遇 .

          -6=,2-=,

          ∴此時PQ兩點相遇時的坐標(biāo)為 ;

          (3) 2t-t=6 , t=6

          6-4=2,3-2=1,

          P、Q兩點相遇時的坐標(biāo)為(1,-2 );

          2t-t=14 , t=14,

          14-6-4=44-3=1,

          P、Q兩點相遇時的坐標(biāo)為(1,-2 ).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)因式分解:-28m3n2+42m2n3-14m2n

          2)因式分解:9a2x-y+4b2y-x

          3)求不等式的負整數(shù)解

          4)解不等式組,把它們的解集在數(shù)軸上表示出來.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,△ABC中,∠ABC45°,CDABDBE平分∠ABC,且BEACE,與CD相交于點F,HBC邊的中點,連結(jié)DHBE相交于點G

          1)求證:BFAC;

          2)求證:CEBF

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】RtABO中,∠AOB=90°,OA=,OB=4,分別以OA、OB邊所在的直線建立平面直角坐標(biāo)系,Dx軸正半軸上一點,以OD為一邊在第一象限內(nèi)作等邊ODE.

          (1)如圖①,當(dāng)E點恰好落在線段AB上時,求E點坐標(biāo);

          (2)在()問的條件下,將ODE沿x軸的正半軸向右平移得到O′D′E′,O′E′、D′E′分別交AB于點G、F(如圖②)求證OO′=E′F;

          (3)若點D沿x軸正半軸向右移動,設(shè)點D到原點的距離為x,ODEAOB重疊部分的面積為y,請直接寫出yx的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在一張矩形紙片ABCD中,AD=4cm,點E,F分別是CDAB的中點,現(xiàn)將這張紙片折疊,使點B落在EF上的點G處,折痕為AH,若HG延長線恰好經(jīng)過點D,則CD的長為_________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖①,在△ABC中,∠ACB90°,BCAC,CE是過點C的一條直線,且A、BCE的異側(cè),ADCED,BECEE.

          (1)求證:ADDE+BE.

          (2)若直線CE繞點C旋轉(zhuǎn),使A、BCE的同側(cè)時(如圖②)ADDE、BE的關(guān)系如何?請予以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABO的直徑, BMO于點B,點PO上的一個動點(不經(jīng)過A,B兩點),OOQAP于點Q,過點PC,交的延長線于點E,連結(jié).

          1)求證:PQO相切;

          2)若直徑AB的長為12,PC=2EC,求tanE的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】求下列各數(shù)的算術(shù)平方根和平方根:

          1900 21 3 414 5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解方程

          12x+5=5x-7

          23(x-2)=2-5(x+2);

          3 +=2

          4.

          查看答案和解析>>

          同步練習(xí)冊答案