日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,1號樓在2號樓的南側(cè),樓間距為AB.冬至日正午,太陽光線與水平面所成的角為32.3°1號樓在2號樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為55.7°,1號樓在2號樓墻面上的影高為DA.已知CD=35m.請求出兩樓之間的距離AB的長度(結(jié)果保留整數(shù))

          (參考數(shù)據(jù):sin32.3°≈0.53cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56tan55.7°≈1.47

          【答案】42m

          【解析】

          構(gòu)造出兩個直角三角形,利用兩個角的正切值即可求出答案.

          解:過點CCEPB,垂足為E,過點DDFPB,垂足為F,

          則∠CEP=PFD=90°,

          由題意可知:設(shè)AB=x

          RtPCE中,tan32.3°=

          PE=xtan32.3°,

          同理可得:在RtPDF中,tan55.7°=,

          PF=xtan55.7°,

          PF-PE=EF=CD=35

          可得xtan55.7°-xtan32.3°=35,

          解得:x=42

          ∴樓間距AB的長度約為42m

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,拋物線yx2+(m2x2mm0)與x軸交于A、B兩點(AB左邊),與y軸交于點C.連接AC、BC,D為拋物線上一動點(DB、C兩點之間),ODBCE點.

          1)若△ABC的面積為8,求m的值;

          2)在(1)的條件下,求的最大值;

          3)如圖2,直線ykx+b與拋物線交于M、N兩點(M不與A重合,MN左邊),連MA,作NHx軸于H,過點HHPMAy軸于點P,PHMN于點Q,求點Q的橫坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知ABO的直徑,AC為弦,ODBC,交ACD,BC4cm

          1)求證:ACOD

          2)求OD的長;

          3)若2sinA10,求O的直徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點ECD上,將BCE沿BE折疊,點C恰落在邊AD上的點F處;點GAF上,將ABG沿BG折疊,點A恰落在線段BF上的點H處,①∠EBG=45°;②△DEF∽△ABG;SABG=SFGH;AG+DF=FG.則下列結(jié)論正確的有(

          A. ①②④ B. ①③④ C. ②③④ D. ①②③

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知△ABC中,∠ABC90°

          (1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請標(biāo)明字母)

          ①作線段AC的垂直平分線l,交AC于點O;

          ②連接BO并延長,在BO的延長線上截取OD,使得ODOB

          ③連接DA、DC

          (2)試判斷ADCD的位置關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:RtEFP和矩形ABCD如圖①擺放(點C與點E重合),點B,CE),F在同一直線上,AB=3cm,BC=9cm,EF=8cmPE=PF=5cm,如圖②,EFP從圖①的位置出發(fā),沿CB方向勻速運動,速度為2cm/s,當(dāng)點F與點C重合時EFP停止運動停止.設(shè)運動時間為ts)(0t4),解答下列問題:

          1)當(dāng)0t2時,EPCD交于點M,請用含t的代數(shù)式表示CE=______CM=______;

          2)當(dāng)2t4時,如圖③,PFCD交于點N,設(shè)四邊形EPNC的面積為ycm2),求yt之間的函數(shù)關(guān)系式;

          3)當(dāng)2t4時,且S四邊形EPNCS矩形ABCD=14時,請求出t的值;

          4)連接BD,在運動過程中,當(dāng)BDEP相交時,設(shè)交點為O,當(dāng)t=______時;O在∠BAD的平分線上.(不需要寫解答過程)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC中,∠A=60°,BMAC于點MCNAB于點N,BM,CN交于點O,連接MN.下列結(jié)論:①∠AMN=ABC;②圖中共有8對相似三角形;③BC=2MN.其中正確的個數(shù)是(  )

          A. 1B. 2C. 3D. 0

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】拋物線y=x2-mx+m2-2m為大于0的常數(shù))與x軸交于A,B兩點(點A在點B的左側(cè))

          1)若點A的坐標(biāo)為(10

          ①求拋物線的表達(dá)式;

          ②當(dāng)nx≤2時,函數(shù)值y的取值范圍是-y≤5-n,求n的值;

          2)將拋物線在x軸下方的部分沿x軸翻折,得到新的函數(shù)的圖象,如圖,當(dāng)2x3時,若此函數(shù)的值隨x的增大而減小,直接寫出m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

          (1)求yx之間的函數(shù)表達(dá)式;

          (2)設(shè)商品每天的總利潤為W(元),求Wx之間的函數(shù)表達(dá)式(利潤=收入-成本);

          (3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少元時獲得最大利潤,最大利潤是多少?

          查看答案和解析>>

          同步練習(xí)冊答案