日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀下面的情境對話,然后解答問題

          (1)根據(jù)“奇異三角形”的定義,請你判斷小華提出的命題:“等邊三角形一定是奇異三角形”是真命題還是假命題?

          (2)在RtABC 中, ∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若RtABC是奇異三角形,求a:b:c;

          (3)如圖,AB是⊙O的直徑,C是上一點(diǎn)(不與點(diǎn)A、B重合),D是半圓的中點(diǎn),CD在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E使得AE=AD,CB=CE.

          1求證:ACE是奇異三角形;

          2當(dāng)ACE是直角三角形時,求∠AOC的度數(shù).

           

          【答案】

          解:(1)真命題

          (2)在RtABC 中a2+b2= c2,

          ∵c>b>a>0

          ∴2c2>a2+b2,2a2<c2+b2

          ∴若RtABC是奇異三角形,一定有2b2=c2+ a2

          ∴2b2=a2+(a2+b2

          ∴b2=2a2 得:b=a

          ∵c2=b2+ a2=3a2

          ∴c=

          ∴a:b: c=

          (3)1∵AB是⊙O的直徑ACBADB=90°

          在RtABC 中,AC2+BC2=AB2

          在RtADB 中,AD2+BD2=AB2

          ∵點(diǎn)D是半圓的中點(diǎn)

          ∴=

          ∴AD=BD

          ∴AB2=AD2+BD2=2AD2

          ∴AC2+CB2=2AD2

          又∵CB=CE,AE=AD

          ∴AC2=CE2=2AE2

          ACE是奇異三角形

          2由1可得ACE是奇異三角形

          ∴AC2=CE2=2AE2

          當(dāng)ACE是直角三角形時

          【解析】(1)根據(jù)“奇異三角形”的定義與等邊三角形的性質(zhì),求證即可;

          (2)根據(jù)勾股定理與奇異三角形的性質(zhì),可得a2+b2=c2與a2+c2=2b2,用a表示出b與c,即可求得答案;

          (3)①AB是⊙O的直徑,即可求得∠ACB=∠ADB=90°,然后利用勾股定理與圓的性質(zhì)即可證得;

          ②利用(2)中的結(jié)論,分別從AC:AE:CE=去分析,即可求得結(jié)果.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江溫州育英學(xué)校八年級10月月考數(shù)學(xué)試卷1(帶解析) 題型:解答題

          閱讀下面的情境對話,然后解答問題

          (1)根據(jù)“奇異三角形”的定義,請你判斷小華提出的命題:“等邊三角形一定是奇異三角形”是真命題還是假命題?
          (2)在RtABC 中, ∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若RtABC是奇異三角形,求a:b:c;
          (3)如圖,AB是⊙O的直徑,C是上一點(diǎn)(不與點(diǎn)A、B重合),D是半圓的中點(diǎn),CD在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E使得AE=AD,CB=CE.

          1求證:ACE是奇異三角形;
          2當(dāng)ACE是直角三角形時,求∠AOC的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案