日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四邊形ABCD是正方形,ΔECG是等腰直角三角形,∠BGE的平分線過點DBE H,OEG的中點,對于下面四個結(jié)論:①GHBE;②OHBG,且;③;④△EBG的外接圓圓心和它的內(nèi)切圓圓心都在直線HG上.其中表述正確的個數(shù)是( )

          A.1B.2C.3D.4

          【答案】D

          【解析】

          ①由四邊形ABCD是正方形,ECG是等腰直角三角形,得出BCE≌△DCG,推出∠BEC+HDE=90°,從而得出GHBE;

          ②由GH是∠EGC的平分線,得出BGH≌△EGH,再由OEG的中點,利用中位線定理,得出OHBG,且;

          ③由(2)得BG=EG,設(shè)CG=x,則CE=x,根據(jù)勾股定理得EG=x,所以BG=x,從而得到BC=(-1)x,根據(jù)正方形面積公式和等腰直角三角形面積公式可以得到S正方形ABCD=(3-2)x2SECG=x2,進而求出;

          ④三角形的外接圓的圓心是三條邊的垂直平分線的交點,三角形的內(nèi)切圓是的圓心是三個角的平分線的交點.由(2)得BG=EG,由(1)得GHBE,因為GH平分∠BGE,所以GHBE邊上的垂直平分線,所以EBG的外接圓圓心和內(nèi)切圓圓心在直線HG上.

          解:①∵四邊形ABCD是正方形,ECG是等腰直角三角形

          BC=CD,CE=CG,∠BCE=DCG=90°

          BCEDCG中,

          BCE≌△DCGSAS

          ∴∠BEC=BGH

          ∵∠BGH+CDG=90°,∠CDG=HDE

          ∴∠BEC+HDE=90°

          GHBE

          故①正確;

          ②∵GH是∠EGC的平分線

          ∴∠BGH=EGH

          在△BGH和△EGH中,

          ∴△BGH≌△EGHASA

          BH=EH

          OEG的中點

          HO是△EBG的中位線

          OHBG,且

          故②正確;

          ③由(2)得△BGH≌△EGH

          BG=EG

          在等腰直角三角形ECG中,設(shè)CG=x,則CE=x

          EG==x

          BG=x

          BC=BG-CG=x-x=(-1)x

          S正方形ABCD=BC2=[(-1)x]2 =(3-2)x2

          SECG=CGCE=x2

          S正方形ABCDSECG=(3-2)x2x2=(6-4)1

          故③正確;

          ④由(2)得BG=EG,由(1)得GHBE

          GH平分∠BGE,

          GHBE邊上的垂直平分線

          ∵三角形的外接圓的圓心是三條邊的垂直平分線的交點,三角形的內(nèi)切圓是的圓心是三個角的平分線的交點.

          EBG的外接圓圓心和內(nèi)切圓圓心在直線HG

          故④正確.

          故選D

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在每個小正方形的邊長為的網(wǎng)格中,點均在格點上,為小正方形邊中點.

          1的長等于 ______;

          2)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個點,使其滿足說明點的位置是如何找到的(不要求證明)______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,拋物線yx2bxc與直線yx3分別交于x軸,y軸上的B,C兩點,設(shè)該拋物線與x軸的另一個交點為A,頂點為D,連接CDx軸于點E

          1)求該拋物線的函數(shù)表達式;

          2)求該拋物線的對稱軸和D點坐標(biāo);

          3)點F,G是對稱軸上兩個動點,且FG=2,點F在點G的上方,請直接寫出四邊形ACFG的周長的最小值;

          4)連接BD,若Py軸上,且∠PBC=DBA+DCB,請直接寫出點P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,菱形ABCD邊長為4,∠A60°,MAD邊的中點,NAB邊上一動點,將△AMN沿MN所在的直線翻折得到△AMN,連接AC,則AC的最小值是(

          A.2B.+1C.22D.3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖是某貨站傳送貨物的平面示意圖,AD與地面的夾角為60°,為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°變成37°,因此傳送帶的落地點由點B到點C向前移動了2.

          1)求點A與地面的高度;

          2)如果需要在貨物著地點C的左側(cè)留出2米,那么請判斷距離D14米的貨物2是否需要挪走,并說明理由.sin37°≈0.6,cos37°≈0.8tan37°≈0.75,≈1.73

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小張用4張相同的小紙條做成甲、乙、丙、丁4支簽,放在一個盒子中,攪勻后先從盒子中任意抽出1支簽(不放回),再從剩余的3支簽中任意抽出1支簽.

          (1)小張第一次抽到的是乙簽的概率是

          (2)求抽出的兩支簽中,1支為甲簽、1支為丙簽的概率(用畫樹狀圖或列表法求解)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知正方形ABCD的邊長為8,點E是正方形內(nèi)部一點,連接BE,CE,且∠ABE=∠BCE,點PAB邊上一動點,連接 PD,PE,則PD+PE長度的最小值為(

          A.B.

          C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線yx2bxc過點A(3, 0)、點B(0, 3).點M(m, 0)在線段OA上(與點A、O不重合),過點Mx軸的垂線與線段AB交于點P,與拋物線交于點Q,聯(lián)結(jié)BQ

          1)求拋物線表達式;

          2)聯(lián)結(jié)OP,當(dāng)∠BOP=∠PBQ時,求PQ的長度;

          3)當(dāng)PBQ為等腰三角形時,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,菱形頂點在函數(shù)的圖象上,函數(shù)的圖象關(guān)于直線對稱,且經(jīng)過點兩點,若,則的值為________

          查看答案和解析>>

          同步練習(xí)冊答案