日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】邊長為a的等邊三角形,記為第1個(gè)等邊三角形,取其各邊的三等分點(diǎn),順次連接得到一個(gè)正六邊形,記為第1個(gè)正六邊形,取這個(gè)正六邊形不相鄰的三邊中點(diǎn),順次連接又得到一個(gè)等邊三角形,記為第2個(gè)等邊三角形,取其各邊的三等分點(diǎn),順次連接又得到一個(gè)正六邊形,記為第2個(gè)正六邊形(如圖),…,按此方式依次操作,則第6個(gè)正六邊形的邊長為(
          A.
          B.
          C.
          D.

          【答案】A
          【解析】解:連接AD、DF、DB. ∵六邊形ABCDEF是正六邊形,
          ∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,
          ∴∠EFD=∠EDF=∠CBD=∠BDC=30°,
          ∵∠AFE=∠ABC=120°,
          ∴∠AFD=∠ABD=90°,
          在Rt△ABD和RtAFD中

          ∴Rt△ABD≌Rt△AFD(HL),
          ∴∠BAD=∠FAD= ×120°=60°,
          ∴∠FAD+∠AFE=60°+120°=180°,
          ∴AD∥EF,
          ∵G、I分別為AF、DE中點(diǎn),
          ∴GI∥EF∥AD,
          ∴∠FGI=∠FAD=60°,

          ∵六邊形ABCDEF是正六邊形,△QKM是等邊三角形,
          ∴∠EDM=60°=∠M,
          ∴ED=EM,
          同理AF=QF,
          即AF=QF=EF=EM,
          ∵等邊三角形QKM的邊長是a,
          ∴第一個(gè)正六邊形ABCDEF的邊長是 a,即等邊三角形QKM的邊長的 ,
          過F作FZ⊥GI于Z,過E作EN⊥GI于N,
          則FZ∥EN,
          ∵EF∥GI,
          ∴四邊形FZNE是平行四邊形,
          ∴EF=ZN= a,
          ∵GF= AF= × a= a,∠FGI=60°(已證),
          ∴∠GFZ=30°,
          ∴GZ= GF= a,
          同理IN= a,
          ∴GI= a+ a+ a= a,即第二個(gè)等邊三角形的邊長是 a,與上面求出的第一個(gè)正六邊形的邊長的方法類似,可求出第二個(gè)正六邊形的邊長是 × a;
          同理第第三個(gè)等邊三角形的邊長是 × a,與上面求出的第一個(gè)正六邊形的邊長的方法類似,可求出第三個(gè)正六邊形的邊長是 × × a;
          同理第四個(gè)等邊三角形的邊長是 × × a,第四個(gè)正六邊形的邊長是 × × × a;
          第五個(gè)等邊三角形的邊長是 × × × a,第五個(gè)正六邊形的邊長是 × × × × a;
          第六個(gè)等邊三角形的邊長是 × × × × a,第六個(gè)正六邊形的邊長是 × × × × × a,
          即第六個(gè)正六邊形的邊長是 × a,
          故選:A.

          連接AD、DB、DF,求出∠AFD=∠ABD=90°,根據(jù)HL證兩三角形全等得出∠FAD=60°,求出AD∥EF∥GI,過F作FZ⊥GI,過E作EN⊥GI于N,得出平行四邊形FZNE得出EF=ZN= a,求出GI的長,求出第一個(gè)正六邊形的邊長是 a,是等邊三角形QKM的邊長的 ;同理第二個(gè)正六邊形的邊長是等邊三角形GHI的邊長的 ;求出第五個(gè)等邊三角形的邊長,乘以 即可得出第六個(gè)正六邊形的邊長.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,大海中某燈塔P周圍10海里范圍內(nèi)有暗礁,一艘海輪在點(diǎn)A處觀察燈塔P在北偏東60°方向,該海輪向正東方向航行8海里到達(dá)點(diǎn)B處,這時(shí)觀察燈塔P恰好在北偏東45°方向.如果海輪繼續(xù)向正東方向航行,會(huì)有觸礁的危險(xiǎn)嗎?試說明理由.(參考數(shù)據(jù): ≈1.73)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校學(xué)生利用雙休時(shí)間去距學(xué)校10km的炎帝故里參觀,一部分學(xué)生騎自行車先走,過了20min后,其余學(xué)生乘汽車沿相同路線出發(fā),結(jié)果他們同時(shí)到達(dá).已知汽車的速度是騎車學(xué)生速度的2倍,求騎車學(xué)生的速度和汽車的速度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù) 的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù) 的圖象上,連接OA、OB,若OA⊥OB,OB= OA,則k=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(6,0),點(diǎn)B(0,6),動(dòng)點(diǎn)C在以半徑為3的⊙O上,連接OC,過O點(diǎn)作OD⊥OC,OD與⊙O相交于點(diǎn)D(其中點(diǎn)C、O、D按逆時(shí)針方向排列),連接AB.
          (1)當(dāng)OC∥AB時(shí),∠BOC的度數(shù)為;
          (2)連接AC,BC,當(dāng)點(diǎn)C在⊙O上運(yùn)動(dòng)到什么位置時(shí),△ABC的面積最大?并求出△ABC的面積的最大值;
          (3)連接AD,當(dāng)OC∥AD時(shí),①求出點(diǎn)C的坐標(biāo);②直線BC是否為⊙O的切線?請(qǐng)作出判斷,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)校舉辦“大愛鎮(zhèn)江”征文活動(dòng),小明為此次活動(dòng)設(shè)計(jì)了一個(gè)以三座山為背景的圖標(biāo)(如圖),現(xiàn)用紅、黃兩種顏色對(duì)圖標(biāo)中的A、B、C三塊三角形區(qū)域分別涂色,一塊區(qū)域只涂一種顏色.
          (1)請(qǐng)用樹狀圖列出所有涂色的可能結(jié)果;
          (2)求這三塊三角形區(qū)域中所涂顏色是“兩塊黃色、一塊紅色”的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】大于1的正整數(shù)m的三次冪可“分裂”成若干個(gè)連續(xù)奇數(shù)的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一個(gè)奇數(shù)是2013,則m的值是( )
          A.43
          B.44
          C.45
          D.46

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,當(dāng)小華站立在鏡子EF前A處時(shí),他看自己的腳在鏡中的像的俯角為45°.若小華向后退0.5米到B處,這時(shí)他看自己的腳在鏡中的像的俯角為30°.求小華的眼睛到地面的距離.(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.73)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點(diǎn)F,D為AB的中點(diǎn),連接DF延長交AC于點(diǎn)E.若AB=10,BC=16,則線段EF的長為
          ( 。

          A.2
          B.3
          C.4
          D.5

          查看答案和解析>>

          同步練習(xí)冊(cè)答案