日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,O為菱形ABCD對角線的交點,DE∥AC,CE∥BD.

          (1)試判斷四邊形OCED的形狀,并說明理由;
          (2)若AC=6,BD=8,求線段OE的長.

          【答案】
          (1)解:四邊形OCED是矩形.

          理由如下:∵DE∥AC,CE∥BD,

          ∴四邊形OCED是平行四邊形,

          ∵四邊形ABCD是菱形,

          ∴∠COD=90°,

          ∴四邊形OCED是矩形


          (2)解:在菱形ABCD中,∵AC=6,BD=8,

          ∴OC= AC= ×6=3,OD= BD= ×8=4,

          ∴CD= = =5,

          在矩形OCED中,OE=CD=5


          【解析】(1)先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對角線互相垂直求出∠COD=90°,然后根據(jù)有一個角是直角的平行四邊形是矩形解答;(2)根據(jù)菱形的對角線互相平分求出OC、OD,再根據(jù)勾股定理列式求出CD,然后根據(jù)矩形的對角線相等求解.
          【考點精析】本題主要考查了菱形的性質(zhì)和矩形的判定方法的相關(guān)知識點,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;有一個角是直角的平行四邊形叫做矩形;有三個角是直角的四邊形是矩形;兩條對角線相等的平行四邊形是矩形才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,⊙O的內(nèi)接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延長線于D點,OC交AB于E點.

          (1)求∠D的度數(shù);
          (2)求證:AC2=ADCE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】把邊長分別為4和6的矩形ABCO如圖放在平面直角坐標(biāo)系中,將它繞點C順時針旋轉(zhuǎn)a角,旋轉(zhuǎn)后的矩形記為矩形EDCF.在旋轉(zhuǎn)過程中,
          (1)如圖①,當(dāng)點E在射線CB上時,E點坐標(biāo)為;

          (2)當(dāng)△CBD是等邊三角形時,旋轉(zhuǎn)角a的度數(shù)是(a為銳角時);
          (3)如圖②,設(shè)EF與BC交于點G,當(dāng)EG=CG時,求點G的坐標(biāo);

          (4)如圖③,當(dāng)旋轉(zhuǎn)角a=90°時,請判斷矩形EDCF的對稱中心H是否在以C為頂點,且經(jīng)過點A的拋物線上.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】△ABC和△A′B′C′在平面直角坐標(biāo)系中的位置分別如圖所示.

          (1)分別寫出下列各點的坐標(biāo):A_______;B_______;C_______;

          (2)△ABC由△A′B′C′經(jīng)過怎樣的平移得到?

          答:_____________________________________

          (3)求△ABC面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某超市利用一個帶斜坡的平臺裝卸貨物,其縱斷面ACFE如圖所示.AE為臺面,AC垂直于地面,AB表示平臺前方的斜坡.斜坡的坡角∠ABC為45°,坡長AB為2m.為保障安全,又便于裝卸貨物,決定減小斜坡AB的坡角,AD 是改造后的斜坡(點D在直線BC上),坡角∠ADC為31°.求斜坡AD底端D與平臺AC的距離CD.(結(jié)果精確到0.01m)[參考數(shù)據(jù):sin31°=0.515,cos31°=0.857,tan31°=0.601, ≈1.414].

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠ACB=90°,將△ABC繞著點A逆時針旋轉(zhuǎn)得到△ADE,點C落在邊AD上,連接BD.若∠DAE=α,則用含α的式子表示∠CBD的大小是(

          A.α
          B.90°﹣α
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形ABCD中,EAD的中點,延長CE,BA交于點F,連接AC,DF

          (1)求證:四邊形ACDF是平行四邊形;

          (2)當(dāng)CF平分∠BCD時,寫出BCCD的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(A類)已知如圖,四邊形ABCD中,AB=BC,AD=CD,求證:∠A=C.

          (B類)已知如圖,四邊形ABCD中,AB=BC,A=C,求證:AD=CD.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AC=6,BC=8,AB=10

          (1)尺規(guī)作圖:作AD平分∠CAB,交BC于點D;

          (2)求CD的長度.

          查看答案和解析>>

          同步練習(xí)冊答案