日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(1)某學(xué)習(xí)小組在探究三角形全等時(shí),發(fā)現(xiàn)了下面這種典型的基本圖形.如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線L經(jīng)過(guò)點(diǎn)A,BD⊥直線L,CE⊥直線L,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

          (2)組員小劉想,如果三個(gè)角不是直角,那結(jié)論是否會(huì)成立呢?如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線L上,并且有∠BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

          (3)數(shù)學(xué)老師贊賞了他們的探索精神,并鼓勵(lì)他們運(yùn)用這個(gè)知識(shí)來(lái)解決問(wèn)題:如圖③,過(guò)△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,AHBC邊上的高,延長(zhǎng)HAEG于點(diǎn)I,求證:IEG的中點(diǎn).

          【答案】(1)證明見(jiàn)解析;(2)DE=BD+CE,證明見(jiàn)解析;(3)證明見(jiàn)解析.

          【解析】

          (1)由條件可證明ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;

          (2)由條件可知∠BAD+CAE=180°-α,且∠DBA+BAD=180°-α,可得∠DBA=CAE,結(jié)合條件可證明ABD≌△CAE,同(1)可得出結(jié)論;

          (3)過(guò)EEMHIM,GNHI的延長(zhǎng)線于N,由條件可知EM=AH=GN,可得EM=GN,結(jié)合條件可證明EMI≌△GNI,可得出結(jié)論IEG的中點(diǎn).

          1)BD⊥直線l,CE⊥直線l,

          ∴∠BDA=CEA=90°,

          ∵∠BAC=90°,

          ∴∠BAD+CAE=90°,

          ∵∠BAD+ABD=90°,

          ∴∠CAE=ABD,

          ADBCEA中,

          ∴△ADB≌△CEA(AAS),

          AE=BD,AD=CE,

          DE=AE+AD=BD+CE;

          (2)DE=BD+CE,證明如下:

          ∵∠BDA=BAC=α,

          ∴∠DBA+BAD=BAD+CAE=180°﹣α,

          ∴∠DBA=CAE,

          ADBCEA中.

          ∴△ADB≌△CEA(AAS),

          AE=BD,AD=CE,

          DE=AE+AD=BD+CE;

          (3)如圖,過(guò)EEMHIM,GNHI的延長(zhǎng)線于N,

          ∴∠EMI=GNI=90°,

          由(1)和(2)的結(jié)論可知EM=AH=GN,

          EM=GN,

          EMIGNI中,,

          ∴△EMI≌△GNI(AAS),

          EI=GI,

          IEG的中點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,點(diǎn)P,Q分別是邊長(zhǎng)為4 cm的等邊三角形ABCAB,BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1 cm/s,連接AQ,CP,相交于點(diǎn)M.下面四個(gè)結(jié)論正確的有________(填序號(hào)).①BP=CM; ②△ABQ ≌△CAP ;③∠CMQ的度數(shù)不變,始終等于60;④當(dāng)?shù)?/span>ss時(shí),△PBQ為直角三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△BDE中,∠BDE=90°,BD=6 ,點(diǎn)D的坐標(biāo)是(7,0),∠BDO=15°,將△BDE旋轉(zhuǎn)到△ABC的位置,點(diǎn)C在BD上,則旋轉(zhuǎn)中心的坐標(biāo)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.
          (1)如圖1,連接DE,BG,M為線段BG的中點(diǎn),連接AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論;
          (2)在圖1的基礎(chǔ)上,將正方形AEFG繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點(diǎn),連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,△ABC的兩條中線AD、CE交于點(diǎn)G,且AD⊥CE.連接BG并延長(zhǎng)與AC交于點(diǎn)F,若AD=9,CE=12,則GF為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)(如圖,轉(zhuǎn)盤(pán)被平均分成20份),并規(guī)定:顧客每購(gòu)物滿200元,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì).如果轉(zhuǎn)盤(pán)停止后,指針正好對(duì)準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得50元、30元、20元的購(gòu)物券,憑購(gòu)物券可以在該商場(chǎng)繼續(xù)購(gòu)物.如果顧客不愿意轉(zhuǎn)盤(pán),那么可直接獲得10元的購(gòu)物券.
          (1)求轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)獲得購(gòu)物券的概率;
          (2)轉(zhuǎn)轉(zhuǎn)盤(pán)和直接獲得購(gòu)物券,你認(rèn)為哪種方式對(duì)顧客更合算?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.

          (1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:DE=AD+BE;

          (2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:DE=AD-BE;

          (3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問(wèn)DE、AD、BE具有怎樣的等量關(guān)系?請(qǐng)直接寫(xiě)出這個(gè)等量關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某書(shū)店老板去批發(fā)市場(chǎng)購(gòu)買(mǎi)某種圖書(shū).第一次用1200元購(gòu)書(shū)若干本,并按該書(shū)定價(jià)20元出售,很快售完.由于該書(shū)暢銷,第二次購(gòu)書(shū)時(shí),每本書(shū)批發(fā)價(jià)比第一次提高了25%,他用1800元所購(gòu)該書(shū)數(shù)量比第一次多20本,又按定價(jià)售出全部圖書(shū).
          (1)求該書(shū)原來(lái)每本的批發(fā)價(jià);
          (2)該老板這兩次售書(shū)一共賺了多少錢(qián)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】閱讀材料:

          小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如.善于思考的小明進(jìn)行了以下探索:

          設(shè)(其中a、b、m、n均為整數(shù)),則有.

          .這樣小明就找到了一種把類似的式子化為平方式的方法。

          請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:(a,b,m,n均為正整數(shù))

          (1),用含m、n的式子分別表示a、b,得:a=___,b=___;

          (2)當(dāng)a=7,n=1時(shí),填空:7+ =( +2

          (3)若,求a的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案