如圖,在邊為的1正方形組成的網(wǎng)格中,建立平面直角坐標(biāo)系,若A(﹣4,2)、B(﹣2,3)、C(﹣1,1),將△ABC沿著x軸翻折后,得到△DEF,點B的對稱點是點E,求過點E的反比例函數(shù)解析式,并寫出第三象限內(nèi)該反比例函數(shù)圖象所經(jīng)過的所有格點的坐標(biāo).
反比例函數(shù)解析式為y=,第三象限內(nèi)該反比例函數(shù)圖象所經(jīng)過的所有格點的坐標(biāo)為(﹣1,﹣6),(﹣2,﹣3),(﹣3,﹣2),(﹣6,﹣1).
解析試題分析:
試題解析:∵點B關(guān)于x軸的對稱點是點E,B(﹣2,3),
∴點E坐標(biāo)為(﹣2,﹣3),
設(shè)過點E的反比例函數(shù)解析式為y=,
∴k=6,
∴過點E的反比例函數(shù)解析式為y=,
∴第三象限內(nèi)該反比例函數(shù)圖象所經(jīng)過的所有格點的坐標(biāo)為(﹣1,﹣6),(﹣2,﹣3),(﹣3,﹣2),(﹣6,﹣1).
考點:1、關(guān)于x軸、y軸對稱的點的坐標(biāo);2、反比例函數(shù)圖象上點的坐標(biāo)特征
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知函數(shù)(x>0)的圖象經(jīng)過點A,B,點A的坐標(biāo)為(1,2).過點A作AC∥y軸,AC=1(點C位于點A的下方),過點C作CD∥x軸,與函數(shù)的圖象交于點D,過點B作BE⊥CD,垂足E在線段CD上,連接OC,OD.
(1)求△OCD的面積;
(2)當(dāng)BE=AC時,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知反比例函數(shù)的圖象經(jīng)過點M(2,1).
(1)求該函數(shù)的表達(dá)式;
(2)當(dāng)時,求
的取值范圍.(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知雙曲線經(jīng)過點M,它關(guān)于y軸對稱的雙曲線為
.
(1)求雙曲線與
的解析式;
(2)若平行于軸的直線交雙曲線
于點A,交雙曲線
于點B,在
軸上存在點P,使以點A,B,O,P為頂點的四邊形是菱形,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知反比例函數(shù)y=(m為常數(shù))的圖象經(jīng)過點A(-1,6).
(1)求m的值;
(2)如圖,過點A作直線AC與函數(shù)y=的圖象交于點B,與x軸交于點C,且AB=2BC,求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖所示,制作一種產(chǎn)品的同時,需將原材料加熱,設(shè)該材料溫度為y℃,從加熱開始計算的時間為x分鐘.據(jù)了解,該材料在加熱過程中溫度y與時間x成一次函數(shù)關(guān)系,已知該材料在加熱前的溫度為l5℃,加熱5分鐘使材料溫度達(dá)到60℃時停止加熱,停止加熱后,材料溫度逐漸下降,這時溫度y與時間x成反比例函數(shù)關(guān)系.
(1)分別求出該材料加熱和停止加熱過程中y與x的函數(shù)關(guān)系(要寫出x的取值范圍);
(2)根據(jù)工藝要求,在材料溫度不低于30℃的這段時間內(nèi),需要對該材料進(jìn)行特殊處理,那么對該材料進(jìn)行特殊處理所用的時間為多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
在-1、3、-2這三個數(shù)中,任選兩個數(shù)的積作為k的值,使反比例函數(shù)的圖象在第一、三象限的概率是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com