日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,矩形紙片ABCD中,AB=3,AD=9,將其折疊,使點D與點B重合,得折痕EF,則EF的長為( 。
          分析:根據(jù)翻折變換的性質(zhì)可知∠1=∠2,BE=DE,而四邊形ABCDE是矩形,那么AD∥BC,于是∠3=∠2,則有∠1=∠3,可得BF=BE,設(shè)AE=x,那么BE=9-x,在Rt△BAE中,利用勾股定理可求AE,進而可求BF=5,再過點E作EG⊥BC于G,易知四邊形ABGE是矩形,再在Rt△EGF中利用勾股定理可求EF.
          解答:解:如右圖所示,
          ∵四邊形EDCF折疊后得到四邊形EBCF,
          ∴∠1=∠2,BE=DE,
          ∵四邊形ABCDE是矩形,
          ∴AD∥BC,
          ∴∠3=∠2,
          ∴∠1=∠3,
          ∴BF=BE,
          設(shè)AE=x,那么BE=9-x,
          在Rt△BAE中,AB2+AE2=BE2,
          即32+x2=(9-x)2
          解得x=4,
          ∴BE=5,
          過點E作EG⊥BC于G,
          ∵EG⊥BC,
          ∴∠BGE=∠A=∠ABG=90°,
          ∴四邊形ABGE是矩形,
          ∴GF=BF-BG=5-4=1,EG=AB=3,
          在Rt△EGF中,EF2=EG2+GF2,=10,
          ∴EF=
          10

          故選C.
          點評:本題考查了翻折變換、勾股定理、矩形的判定和性質(zhì)、解題的關(guān)鍵是注意翻折前后的圖形全等,并先求出AE.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=4,BC=4
          3
          ,將矩形沿對角線AC剪開,解答以下問題:
          (1)在△ACD繞點C順時針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
          (2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
          (3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4
          3
          ),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.
          精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學(xué)先折出矩形紙片ABCD的對角線AC,再分別精英家教網(wǎng)把△ABC、△ADC沿對角線AC翻折交AD、BC于點F、E.
          (1)判斷小明所折出的四邊形AECF的形狀,并說明理由;
          (2)求四邊形AECF的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

          如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
          (1)在△ACD繞點C順時針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
          (2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
          (3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:第25章《圖形的變換》中考題集(30):25.3 軸對稱變換(解析版) 題型:解答題

          如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
          (1)在△ACD繞點C順時針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
          (2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
          (3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

          (2007•益陽)如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
          (1)在△ACD繞點C順時針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
          (2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
          (3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


          查看答案和解析>>

          同步練習(xí)冊答案