日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,直線y=﹣x﹣4與拋物線y=ax2+bx+c相交于A,B兩點,其中A,B兩點的橫坐標分別為﹣1和﹣4,且拋物線過原點.

          (1)求拋物線的解析式;
          (2)在坐標軸上是否存在點C,使△ABC為等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;
          (3)若點P是線段AB上不與A,B重合的動點,過點P作PE∥OA,與拋物線第三象限的部分交于一點E,過點E作EG⊥x軸于點G,交AB于點F,若S△BGF=3S△EFP , 求 的值.

          【答案】
          (1)解:∵A,B兩點在直線y=﹣x﹣4上,且橫坐標分別為﹣1、﹣4,

          ∴A(﹣1,﹣3),B(﹣4,0),

          ∵拋物線過原點,

          ∴c=0,

          把A、B兩點坐標代入拋物線解析式可得 ,解得

          ∴拋物線解析式為y=x2+4x


          (2)解:∵△ABC為等腰三角形,

          ∴有AB=AC、AB=BC和CA=CB三種情況,

          ①當AB=AC時,當點C在y軸上,設C(0,y),

          則AB= =3 ,AC= ,

          ∴3 = ,解得y=﹣3﹣ 或y=﹣3+

          ∴C(0,﹣3﹣ )或(0,﹣3﹣ );

          當點C在x軸上時,設C(x,0),則AC=

          =3 ,解得x=﹣4或x=2,當x=﹣4時,B、C重合,舍去,

          ∴C(2,0);

          ②當AB=BC時,當點C在x軸上,設C(x,0),

          則有AB=3 ,BC=|x+4|,

          ∴|x+4|=3 ,解得x=﹣4+3 或x=﹣4﹣3 ,

          ∴C(﹣4+3 ,0)或(﹣4﹣3 ,0);

          當點C在y軸上,設C(0,y),則BC=

          =3 ,解得y= 或y=﹣ ,

          ∴C(0, )或(0,﹣ );

          ③當CB=CA時,則點C在線段AB的垂直平分線與y軸的交點處,

          ∵A(﹣1,﹣3),B(﹣4,0),

          ∴線段AB的中點坐標為(﹣ ,﹣ ),

          設線段AB的垂直平分線的解析式為y=x+d,

          ∴﹣ =﹣ +d,解得d=1,

          ∴線段AB的垂直平分線的解析式為y=x+1,

          令x=0可得y=1,令y=0可求得x=﹣1,

          ∴C(﹣1,0)或(0,1);

          綜上可知存在滿足條件的點C,其坐標為(0,﹣3﹣ )或(0,﹣3﹣ )或(﹣4+3 ,0)或(﹣4﹣3 ,0)或(﹣1,0)或(0,1)或(2,0)或(0, )或(0,﹣


          (3)解:過點P作PQ⊥EF,交EF于點Q,過點A作AD⊥x軸于點D,

          ∵PE∥OA,GE∥AD,

          ∴∠OAD=∠PEG,∠PQE=∠ODA=90°,

          ∴△PQE∽△ODA,

          = =3,即EQ=3PQ,

          ∵直線AB的解析式為y=﹣x﹣4,

          ∴∠ABO=45°=∠PFQ,

          ∴PQ=FQ,BG=GF,

          ∴EF=4PQ,

          ∴GE=GF+4PQ,

          ∵S△BGF=3S△EFP,

          GF2=3× 4PQ2,

          ∴GF=2 PQ,

          = =


          【解析】(1)由直線解析式可分別求得A、B兩點的坐標,利用待定系數(shù)法可求得拋物線解析式;(2)當AB=AC時,點C在y軸上,可表示出AC的長度,可求得其坐標;當AB=BC時,可知點C在x軸上,可表示出BC的長度,可求得其坐標;當AC=BC時點C在線段AB的垂直平分線與坐標軸的交點處,可求得線段AB的中點的坐標,可求得垂直平分線的解析式,則可求得C點坐標;(3)過點P作PQ⊥EF,交EF于點Q,過點A作AD⊥x軸于點D,可證明△PQE∽△ODA,可求得EQ=3PQ,再結(jié)合F點在直線AB上,可求得FQ=PQ,則可求得EF=4PQ,利用三角形的面積的關系可求得GF與PQ的關系,則可求得比值.
          【考點精析】解答此題的關鍵在于理解相似三角形的性質(zhì)的相關知識,掌握對應角相等,對應邊成比例的兩個三角形叫做相似三角形.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,點E、點F分別是等邊△ABC的邊AB、AC上的點,且BE=AFCE、BF 相交于點P,則∠BPC的大小為_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】中華文明,源遠流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分,為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:

          成績x/分

          頻數(shù)

          頻率

          50≤x<60

          10

          0.05

          60≤x<70

          30

          0.15

          70≤x<80

          40

          n

          80≤x<90

          m

          0.35

          90≤x≤100

          50

          0.25

          請根據(jù)所給信息,解答下列問題:
          (1)m= , n=
          (2)請補全頻數(shù)分布直方圖;
          (3)這次比賽成績的中位數(shù)會落在分數(shù)段;
          (4)若成績在90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】我市在創(chuàng)建全國文明城市過程中,決定購買A,B兩種樹苗對某路段道路進行綠化改造,已知購買A種樹苗8棵,B種樹苗3棵,需要950元;若購買A種樹苗5棵,B種樹苗6棵,則需要800元.
          (1)求購買A,B兩種樹苗每棵各需多少元?
          (2)考慮到綠化效果和資金周轉(zhuǎn),購進A種樹苗不能少于50棵,且用于購買這兩種樹苗的資金不能超過7650元,若購進這兩種樹苗共100棵,則有哪幾種購買方案?
          (3)某包工隊承包種植任務,若種好一棵A種樹苗可獲工錢30元,種好一棵B種樹苗可獲工錢20元,在第(2)問的各種購買方案中,種好這100棵樹苗,哪一種購買方案所付的種植工錢最少?最少工錢是多少元?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k0)的圖象經(jīng)過點(1,0)和(0,2).

          (1)當﹣2x3時,求y的取值范圍;

          (2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,⊙O的半徑是4,圓周角∠C=60°,點E時直徑AB延長線上一點,且∠DEB=30°,則圖中陰影部分的面積為

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】一架長2.5m的梯子斜靠在豎直的墻上,這時梯足到墻的底端距離為0.7m,若梯子頂端下滑0.4m,則梯足將向外移

          A、0.6mB、0.7m C、0.8mD、0.9m

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知數(shù)軸上三點M,O,N對應的數(shù)分別為﹣20,4,點P為數(shù)軸上任意一點,其對應的數(shù)為x

          1)如果點P到點MN的距離相等,則x   

          2)數(shù)軸上是否存在點P,使點P到點M、點N的距離之和是10?若存在,求出x的值;若不存在,請說明理由.

          3)如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設t分鐘時點P到點M、點N的距離相等,求t的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖所示,長方形ABCD陽光小區(qū)內(nèi)一塊空地,已知AB=(2a+6b)米,BC=(8a+4b)米.

          1)該長方形ABCD的面積是多少平方米?

          2)若EAB邊的中點,DFBC,現(xiàn)打算在陰影部分種植一片草坪,這片草坪的面積是多少平方米?

          查看答案和解析>>

          同步練習冊答案