日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y=x2-(2m-1)x+4m-6.
          (1)試說明對于每一個(gè)實(shí)數(shù)m,拋物線都經(jīng)過x軸上的一個(gè)定點(diǎn);
          (2)設(shè)拋物線與x軸的兩個(gè)交點(diǎn)A(x1,0)和B(x2,0)(x1<x2)分別在原點(diǎn)的兩側(cè),且A、B兩點(diǎn)間的距離小于6,求m的取值范圍;
          (3)拋物線的對稱軸與x軸交于點(diǎn)C(
          2m-1
          2
          ,0)
          ,在(2)的條件下,試判斷是否存在m的值,使經(jīng)過點(diǎn)C及拋物線與x軸的一個(gè)交點(diǎn)的⊙M與y軸的正半軸相切于點(diǎn)D,且被x軸截得的劣弧與
          CD
          是等。咳舸嬖,求出所有滿足條件的m的值;若不存在,說明理由.
          分析:(1)將拋物線的解析式化為交點(diǎn)式,可求得拋物線與x軸的交點(diǎn)其中一個(gè)是定值,不隨m的變化而變化;
          (2)本題可從兩個(gè)方面考慮:①AB的距離小于6,可用韋達(dá)定理求出一個(gè)m的取值范圍,
          ②由于A、B分別在原點(diǎn)兩側(cè),因此根據(jù)韋達(dá)定理有x1x2<0,據(jù)此可求出另外一個(gè)m的取值范圍.綜合兩種情況即可得出所求的m的取值范圍;
          (3)本題要先畫出圖形,分拋物線對稱軸在y軸左側(cè)和右側(cè)兩種情況進(jìn)行求解.解題思路一致.假設(shè)圓M與y軸的切點(diǎn)為D,過M作x軸的垂線設(shè)垂足為E,都是通過在直角三角形ACD和MEB(或MEA)中分別表示出OD和ME的長,根據(jù)OD=ME來列等量關(guān)系求出t的值.
          解答:解:(1)由題意可知:y=(x-2)(x-2m+3),
          因此拋物線與x軸的兩個(gè)交點(diǎn)坐標(biāo)為:
          (2,0)(2m-3,0),
          因此無論m取何值,拋物線總與x軸交于(2,0)點(diǎn);

          (2)令y=0,有:x2-(2m-1)x+4m-6=0,則:
          x1+x2=2m-1,x1x2=4m-6;
          ∵AB<6
          ∴x2-x1<6,
          即(x2-x12<36,(x1+x22-4x1x2<36,
          即(2m-1)2-4(4m-6)<36,
          解得-
          1
          2
          <x<
          11
          2
          .①
          根據(jù)A、B分別在原點(diǎn)兩側(cè)可知:x1x2<0,
          即4m-6<0,m<
          3
          2
          .②
          綜合①②可得-
          1
          2
          <m<
          3
          2

          精英家教網(wǎng)
          (3)假設(shè)存在這樣的m,設(shè)圓M與y軸的切點(diǎn)為D,過M作x軸的垂線設(shè)垂足為E.
          ①當(dāng)C點(diǎn)在x正半軸時(shí),x=
          2m-1
          2
          >0,
          因此
          1
          2
          <m<
          3
          2
          ,
          ∵弧BC=弧CD,
          因此BC=CD.
          OC=
          2m-1
          2
          ,CD=BC=OB-OC=2-
          2m-1
          2
          =
          5-2m
          2
          ,EC=
          1
          2
          BC=
          5-2m
          4

          OE=MD=OC+CE=
          2m-1
          2
          +
          5-2m
          2
          =
          2m+3
          4

          易知:OD=ME,即OD2=ME2
          ∴CD2-OC2=CM2-CE2
          2m-5
          2
          2-(
          2m-1
          2
          2=(
          2m+3
          4
          2-(
          5-2m
          4
          2;
          解得m=
          7
          6
          ,符合m的取值范圍.
          ②當(dāng)C點(diǎn)在x負(fù)半軸時(shí),x=
          2m-1
          2
          <0,
          因此-
          1
          2
          <m<
          1
          2
          ,
          同①可求得OC=
          1-2m
          2
          ,CD=AC=
          5-2m
          2
          ,CE=
          5-2m
          4
          ,MD=OE=
          7-6m
          4

          同理有:CD2-OC2=MC2-CE2
          5-2m
          2
          2-(
          1-2m
          2
          2=(
          7-6m
          4
          2-(
          5-2m
          4
          2
          化簡得:m2=
          9
          4
          ,
          ∴m=±
          3
          2
          ,均不符合m的取值范圍,
          因此這種情況不成立.
          綜上所述,存在符合條件的m,且m=
          7
          6
          點(diǎn)評:本題結(jié)合圓和一元二次方程的相關(guān)知識考查了二次函數(shù)的綜合應(yīng)用,難度較大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=x2-8x+c的頂點(diǎn)在x軸上,則c等于(  )
          A、4B、8C、-4D、16

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1≠x2).
          (1)求a的取值范圍,并證明A、B兩點(diǎn)都在原點(diǎn)O的左側(cè);
          (2)若拋物線與y軸交于點(diǎn)C,且OA+OB=OC-2,求a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
          精英家教網(wǎng)(1)求b+c的值;
          (2)若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
          (3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•虹口區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點(diǎn),頂點(diǎn)為M.
          (1)求b、c的值;
          (2)將△OAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A落到點(diǎn)C的位置,該拋物線沿y軸上下平移后經(jīng)過點(diǎn)C,求平移后所得拋物線的表達(dá)式;
          (3)設(shè)(2)中平移后所得的拋物線與y軸的交點(diǎn)為A1,頂點(diǎn)為M1,若點(diǎn)P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•黔南州)已知拋物線y=x2-x-1與x軸的交點(diǎn)為(m,0),則代數(shù)式m2-m+2011的值為( 。

          查看答案和解析>>

          同步練習(xí)冊答案