日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在Rt△ABC中,∠C=90°,AB=10,sinA=.點(diǎn)P、Q分別是AC、BA邊上的動(dòng)點(diǎn),且AP=BQ=x.
          (1)若△APQ的面積是y,試求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
          (2)當(dāng)△APQ為等腰三角形時(shí),求x的值;
          (3)如果點(diǎn)R是AC邊上的動(dòng)點(diǎn),且CR=AP=BQ=x,那么是否存在這樣的x,使得∠PQR=90°?若存在,求x的值;若不存在,請(qǐng)說(shuō)明理由.

          【答案】分析:(1)過(guò)點(diǎn)Q作QM⊥AC于M,利用條件sinA=,可得到QM和AQ的關(guān)系,根據(jù)三角形的面積公式可得y=AP•QM=x•(10-x)=-x2+3x,再根據(jù)已知條件求出自變量的取值范圍即可;
          (2)本小題要分三種情況:①當(dāng)AP=AQ時(shí),②當(dāng)AP=PQ時(shí),③當(dāng)AQ=PQ時(shí)分別討論求出x的值即可;
          (3)存在這樣的x,使得∠PQR=90°,過(guò)點(diǎn)P作PM⊥AB于M,過(guò)點(diǎn)R作RN⊥AB于N,當(dāng)∠PQR=90°時(shí),∠PQM+∠NQR=90°,再根據(jù)已知條件證明△PQM∽△QRN,由相似三角形的性質(zhì)可得到,因?yàn)镽N=AR=(AC-CR)=(6-x),PM=AP=x,,,所以可得到方程得6x2-49x+90=0,進(jìn)而求出x的值.反之,當(dāng)時(shí),過(guò)點(diǎn)P作PM⊥AB于M過(guò)點(diǎn)Q作RN⊥AB于N,由以上思路也可求出x的另外一個(gè)值.
          解答:解:(1)過(guò)點(diǎn)Q作QM⊥AC于M,
          在Rt△AMQ中,∠AMQ=90°,
          ∵sinA==
          ∴QM=AQ=(10-x),
          ∴y=AP•QM=x•(10-x)=-x2+3x;
          在Rt△ABC中,∠C=90°,
          ∵sinA=,
          ∴BC=AB•sinA=10×=6,
          ∴AC==8,
          ∴自變量x的取值范圍為:0<x≤8;

          (2)分三種情況:①當(dāng)AP=AQ時(shí),有x=10-x,
          ∴x=5;
          ②當(dāng)AP=PQ時(shí),過(guò)點(diǎn)P作PN⊥AB于N,
          在Rt△ANP中,∠ANP=90°,
          ∴AN=APcosA,
          ∵sinA=,
          ∴cosA=,
          ∵AN=AQ=
          ,
          解得:x=;
          ③當(dāng)AQ=PQ時(shí),過(guò)點(diǎn)Q作QS⊥AC于S,
          在Rt△ASQ中,∠ASQ=90°,
          ∴AS=AQcosA,
          ,
          解得;
          綜合①、②、③,x=5或

          (3)存在這樣的x,使得∠PQR=90°,
          理由如下:
          過(guò)點(diǎn)P作PM⊥AB于M,過(guò)點(diǎn)Q作RN⊥AB于N,
          當(dāng)∠PQR=90°時(shí),∠PQM+∠NQR=90°,
          ∵∠RNQ=∠QMP=90°,
          ∴∠NQR+∠NRQ=90°,
          ∴∠NRQ=∠MQP,
          ∴△PQM∽△QRN,
          ,
          ∵RN=AR=(AC-CR)=(6-x),PM=AP=x,,,
          ,
          化簡(jiǎn),得6x2-49x+90=0解得;
          反之,當(dāng)時(shí),過(guò)點(diǎn)P作PM⊥AB于M過(guò)點(diǎn)Q作RN⊥AB于N
          ,
          ,,
          又∵∠RNQ=∠QMP=90°,
          ∴△RNQ∽△QMP,
          ∴∠QRN=∠MQP,又∠QNR+∠NQR=90°,
          ∴∠MQP+∠NQR=90°,
          ∴∠PQR=90°,
          同理,當(dāng)時(shí),可證∠PQR=90°.
          綜合以上,當(dāng)時(shí),∠PQR=90°.
          點(diǎn)評(píng):本題考查了銳角三角函數(shù)、三角形的面積公式、勾股定理的運(yùn)用、相似三角形的判定和性質(zhì)以及一元二次方程的計(jì)算和分類討論的數(shù)學(xué)數(shù)學(xué),題目的綜合性很強(qiáng),難度很大,對(duì)學(xué)生的綜合解題能力要求相當(dāng)高.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過(guò)點(diǎn)D,且交AC于點(diǎn)F.
          (1)求證:BC是⊙O的切線;
          (2)若CD=6,AC=8,求AE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
          (1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
          (2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
          (3)如果△CEF與△DEF相似,求AD的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在Rt△ABC中,BD⊥AC,sinA=
          3
          5
          ,則cos∠CBD的值是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
          5
          cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
          (1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
          (t-2)
          (t-2)
          cm,(用含t的代數(shù)式表示).
          (2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
          (3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案