日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2006•吉林)如圖,在平面直角坐標(biāo)系中,有一矩形COAB,其中三個頂點的坐標(biāo)分別為C(0,3),O(0,0)和A(4,0),點B在⊙O上.
          (1)求點B的坐標(biāo);
          (2)求⊙O的面積.

          【答案】分析:(1)根據(jù)點的坐標(biāo)的意義,表示點B的坐標(biāo);
          (2)求⊙O的面積,需先求⊙O的半徑OB.
          解答:解:(1)∵A(4,0),C(0,3),
          ∴B(4,3);(2分)

          (2)連接OB.
          ∵OA=4,AB=3,
          ∴OB==5.                       (4分)
          ∴⊙O的面積=π•OB2=25π.                      (5分)
          點評:命題立意:考查數(shù)形結(jié)合思想,線段長與點的坐標(biāo)的轉(zhuǎn)化.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

          (2006•吉林)如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點C順時針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FC與AB交于點H,且A(0,4),C(6,0)(如圖1).
          (1)當(dāng)α=60°時,△CBD的形狀是______;
          (2)當(dāng)AH=HC時,求直線FC的解析式;
          (3)當(dāng)α=90°時,(如圖2).請?zhí)骄浚航?jīng)過點D,且以點B為頂點的拋物線,是否經(jīng)過矩形CFED的對稱中心M,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

          (2006•吉林)如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度AB=20米,頂點M距水面6米(即MO=6米),小孔頂點N距水面4.5米(即NC=4.5米).當(dāng)水位上漲剛好淹沒小孔時,借助圖中的直角坐標(biāo)系,求此時大孔的水面寬度EF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

          (2006•吉林)如圖,在平面直角坐標(biāo)系xOy中,矩形OEFG的頂點E坐標(biāo)為(4,0),頂點G坐標(biāo)為(0,2).將矩形OEFG繞點O逆時針旋轉(zhuǎn),使點F落在y軸的點N處,得到矩形OMNP,OM與GF交于點A.
          (1)判斷△OGA和△OMN是否相似,并說明理由;
          (2)求過點A的反比例函數(shù)解析式;
          (3)設(shè)(2)中的反比例函數(shù)圖象交EF于點B,求直線AB的解析式;
          (4)請?zhí)剿鳎呵蟪龅姆幢壤瘮?shù)的圖象,是否經(jīng)過矩形OEFG的對稱中心,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年吉林省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

          (2006•吉林)如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度AB=20米,頂點M距水面6米(即MO=6米),小孔頂點N距水面4.5米(即NC=4.5米).當(dāng)水位上漲剛好淹沒小孔時,借助圖中的直角坐標(biāo)系,求此時大孔的水面寬度EF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年吉林省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

          (2006•吉林)如圖,在平面直角坐標(biāo)系xOy中,矩形OEFG的頂點E坐標(biāo)為(4,0),頂點G坐標(biāo)為(0,2).將矩形OEFG繞點O逆時針旋轉(zhuǎn),使點F落在y軸的點N處,得到矩形OMNP,OM與GF交于點A.
          (1)判斷△OGA和△OMN是否相似,并說明理由;
          (2)求過點A的反比例函數(shù)解析式;
          (3)設(shè)(2)中的反比例函數(shù)圖象交EF于點B,求直線AB的解析式;
          (4)請?zhí)剿鳎呵蟪龅姆幢壤瘮?shù)的圖象,是否經(jīng)過矩形OEFG的對稱中心,并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案