日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 9、方程x3-2x2-3x=0的解是
          x1=0,x2=-1,x3=3
          分析:首先提取公因式,然后利用十字相乘法分解因式即可求解.
          解答:解:∵x3-2x2-3x=0,
          ∴x(x2-2x-3)=0,
          ∴x(x-3)(x+1)=0,
          ∴x1=0,x2=-1,x3=3.
          故答案為:x1=0,x2=-1,x3=3.
          點(diǎn)評(píng):此題主要考查了高次方程的解法,一般是通過因式分解降次然后轉(zhuǎn)化為一次或二次方程解決問題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          2、解方程x3-2x2-4x+8=0.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          方程x3-2x2-1=0的實(shí)數(shù)根個(gè)數(shù)為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀以下材料:
          若關(guān)于x的三次方程x3+ax2+bx+c=0(a、b、c為整數(shù))有整數(shù)解n,則將n代入方程x3+ax2+bx+c=0得:n3+an2+bn+c=0
          ∴c=-n3-an2-bn=-n(n2+an+b)
          ∵a、b、n都是整數(shù)∴n2+an+b是整數(shù)∴n是c的因數(shù).
          上述過程說明:整數(shù)系數(shù)方程x3+ax2+bx+c=0的整數(shù)解n只能是常數(shù)項(xiàng)c的因數(shù).
          如:∵方程x3+4x2+3x-2=0中常數(shù)項(xiàng)-2的因數(shù)為:±1和±2,
          ∴將±1和±2分別代入方程x3+4x2+3x-2=0得:x=-2是該方程的整數(shù)解,-1、1、2不是方程的整數(shù)解.
          解決下列問題:
          (1)根據(jù)上面的學(xué)習(xí),方程x3+2x2+6x+5=0的整數(shù)解可能
          ±1,±5
          ±1,±5
          ;
          (2)方程-2x3+4x2+12x-14=0有整數(shù)解嗎?若有,求出整數(shù)解;若沒有,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          方程x3-2x2=1的實(shí)數(shù)根的情況是(  )

          查看答案和解析>>

          同步練習(xí)冊(cè)答案