日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (觀察下列等式:
          1
          1×2
          =1-
          1
          2
          ,
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,以上三個等式兩邊分別相加得:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =1-
          1
          4
          =
          3
          4

          (1)猜想并寫出:
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          1
          n
          -
          1
          n+1

          (2)直接寫出下列各式的計算結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          49×50
          =
          49
          50
          49
          50
          ;
          (3)計算:
          1
          1×3
          +
          1
          3×5
          +
          1
          5×7
          +…+
          1
          2007×2009
          分析:(1)分子為1,分母為相鄰2個數(shù)的積,結(jié)果等于分子為1,分母分別為2個因數(shù)的分?jǐn)?shù)的差;
          (2)化簡后,只剩首尾兩個數(shù),相減即可;
          (3)分子為1,分母為相差2的2個數(shù)的積,結(jié)果等于分子為1,分母分別為2個因數(shù)的分?jǐn)?shù)的差,再乘以
          1
          2
          ,進(jìn)而按照(2)得到的規(guī)律,計算即可;
          解答:解:(1)
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1

          故答案為
          1
          n
          -
          1
          n+1
          ;

          (2)原式=1-
          1
          50
          =
          49
          50
          ;
          故答案為
          49
          50
          ;

          (3)原式=(1-
          1
          3
          +
          1
          3
          -
          1
          5
          +…+
          1
          2007
          -
          1
          2009
          )×
          1
          2

          =(1-
          1
          2009
          )×
          1
          2
          =
          2008
          2009
          ×
          1
          2

          =
          1004
          2009
          點(diǎn)評:考查數(shù)字的變化規(guī)律;得到分子為1,分母為等差數(shù)列的幾個分?jǐn)?shù)的和的計算方法是解決本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          觀察下列等式:
          1
          1×2
          =1-
          1
          2
          ,
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,將以上三個等式兩邊分別相加得:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =1-
          1
          4
          =
          3
          4

          (1)猜想并寫出:
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          1
          n
          -
          1
          n+1
          ;
          (2)計算:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +
          +
          1
          n(n+1)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          觀察下列等式:
          1
          1×2
          =1-
          1
          2
          ,
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,
          把以上三個等式兩邊分別相加得:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =1-
          1
          4
          =
          3
          4

          (1)猜想并寫出:
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          1
          n
          -
          1
          n+1

          (2)直接寫出下列各式的計算結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2008×2009
          =
          2008
          2009
          2008
          2009
          ;
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          n(n+1)
          =
          n
          n+1
          n
          n+1

          (3)探究并計算:
          1
          2×4
          +
          1
          4×6
          +
          1
          6×8
          +…+
          1
          2006×2008

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          附加題:
          (1)已知|a-2|+|b+6|=0,則a+b=
          -4
          -4

          (2)觀察下列等式:
          1
          1×2
          =1-
          1
          2
          ,
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,將以上三個等式相加得:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =1-
          1
          4
          =
          3
          4

          ①猜想并寫出:
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          1
          n
          -
          1
          n+1

          ②直接寫出結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2006×2007
          =
          2006
          2007
          2006
          2007

          (3)在數(shù)軸上有兩點(diǎn),它們到原點(diǎn)的距離分別是2和3,問這兩點(diǎn)之間的距離是多少?
          (4)求|
          1
          2
          -1|+|
          1
          3
          -
          1
          2
          |+…+|
          1
          99
          -
          1
          98
          |+|
          1
          100
          -
          1
          99
          |的值.
          (5)如圖所示,數(shù)軸上有四點(diǎn)A,B,C,D分別表示有理數(shù)a,b,c,d,用“<”把表示a,b,c,d,|a|,|b|,-|c|,-|d|的數(shù)連接起來.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          觀察下列等式:
          1
          1×2
          =1-
          1
          2
          ,
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,將以上三個等式相加得:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =1-
          1
          4
          =
          3
          4

          (1)猜想并寫出:
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          1
          n
          -
          1
          n+1

          (2)直接寫出結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2006×2007
          =
          2006
          2007
          2006
          2007

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          觀察下列等式:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =1-
          1
          4
          =
          3
          4

          (1)直接寫出下列各式的計算結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2006×2007
          =
          2006
          2007
          2006
          2007
          ;
          (2)探究并計算:
          1
          2×4
          +
          1
          4×6
          +
          1
          6×8
          +…+
          1
          2006×2008

          查看答案和解析>>

          同步練習(xí)冊答案