日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)△ABC的面積為1,如圖①,將邊BC、AC分別2等分,BE1、AD1相交于點O,△AOB的面積記為S1;如圖②將邊BC、AC分別3等分,BE1、AD1相交于點O,△AOB的面積記為S2;…,依此類推,則Sn可表示為  .(用含n的代數(shù)式表示,其中n為正整數(shù))

          【答案】
          【解析】解:如圖,連接D1E1 , 設(shè)AD1、BE1交于點M,

          ∵AE1:AC=1:(n+1),
          ∴SABE1:SABC=1:(n+1),
          ∴SABE1=
          ==,
          =,
          ∴SABM:SABE1=(n+1):(2n+1),
          ∴SABM=(n+1):(2n+1),
          ∴SABM=
          故答案為:
          連接D1E1 , 設(shè)AD1、BE1交于點M,先求出SABE1=,再根據(jù)==得出SABM:SABE1=(n+1):(2n+1),最后根據(jù)SABM=(n+1):(2n+1),即可求出SABM

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙、丙三個布袋都不透明,甲袋中裝有1個紅球和1個白球;乙袋中裝有一個紅球和2個白球;丙袋中裝有2個白球.這些球除顏色外都相同.從這3個袋中各隨機地取出1個球. (Ⅰ)取出的3個球恰好是2個紅球和1個白球的概率是多少?
          (Ⅱ)取出的3個球全是白球的概率是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知二次函數(shù)L1:y=ax2-2ax+a+3(a>0)和二次函數(shù)L2:y=-a(x+1)2+1(a>0)圖象的頂點分別為M,N,與y軸分別交于點E,F(xiàn).

          (1)函數(shù)y=ax2-2ax+a+3(a>0)的最小值為  , 當(dāng)二次函數(shù)L1 , L2的y值同時隨著x的增大而減小時,x的取值范圍是
          (2)當(dāng)EF=MN時,求a的值,并判斷四邊形ENFM的形狀(直接寫出,不必證明).
          (3)若二次函數(shù)L2的圖象與x軸的右交點為A(m,0),當(dāng)△AMN為等腰三角形時,求方程-a(x+1)2+1=0的解.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(0,3),且當(dāng)x=1時,y有最小值2.

          (1)求a,b,c的值
          (2)設(shè)二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)(k為實數(shù)),它的圖象的頂點為D.
          ①當(dāng)k=1時,求二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)的圖象與x軸的交點坐標(biāo);
          ②請在二次函數(shù)y=ax2+bx+c與y=k(2x+2)﹣(ax2+bx+c)的圖象上各找出一個點M,N,不論k取何值,這兩個點始終關(guān)于x軸對稱,直接寫出點M,N的坐標(biāo)(點M在點N的上方);
          ③過點M的一次函數(shù)y=﹣x+t的圖象與二次函數(shù)y=ax2+bx+c的圖象交于另一點P,當(dāng)k為何值時,點D在∠NMP的平分線上?
          ④當(dāng)k取﹣2,﹣1,0,1,2時,通過計算,得到對應(yīng)的拋物線y=k(2x+2)﹣(ax2+bx+c)的頂點分別為(﹣1,﹣6,),(0,﹣5),(1,﹣2),(2,3),(3,10),請問:頂點的橫、縱坐標(biāo)是變量嗎?縱坐標(biāo)是如何隨橫坐標(biāo)的變化而變化的?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知⊙O的直徑AB=12cm,AC是⊙O的弦,過點C作⊙O的切線交BA的延長線于點P,連接BC.

          (1)求證:∠PCA=∠B
          (2)已知∠P=40°,點Q在優(yōu)弧ABC上,從點A開始逆時針運動到點C停止(點Q與點C不重合),當(dāng)△ABQ與△ABC的面積相等時,求動點Q所經(jīng)過的弧長。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x與一次函數(shù)y=﹣x+7的圖象交于點A.

          (1)求點A的坐標(biāo)。
          (2)設(shè)x軸上有一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側(cè)),分別交y=x和y=﹣x+7的圖象于點B、C,連接OC.若BC=OA,求△OBC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)解方程:x2﹣2x﹣3=0;
          (2)解不等式組:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知點A(8,1),B(0,﹣3),反比例函數(shù)y=(x>0)的圖象經(jīng)過點A,動直線x=t(0<t<8)與反比例函數(shù)的圖象交于點M,與直線AB交于點N.

          (1)求k的值。
          (2)求△BMN面積的最大值。
          (3)若MA⊥AB,求t的值。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知△ABC是等腰三角形,頂角∠BAC=α(α<60°),D是BC邊上的一點,連接AD,線段AD繞點A順時針旋轉(zhuǎn)α到AE,過點E作BC的平行線,交AB于點F,連接DE,BE,DF.

          (1)求證:BE=CD;
          (2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明.

          查看答案和解析>>

          同步練習(xí)冊答案