日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2007•青島)已知:如圖,△ABC是邊長(zhǎng)3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),解答下列問(wèn)題:
          (1)當(dāng)t為何值時(shí),△PBQ是直角三角形?
          (2)設(shè)四邊形APQC的面積為y(cm2),求y與t的關(guān)系式;是否存在某一時(shí)刻t,使四邊形APQC的面積是△ABC面積的三分之二?如果存在,求出相應(yīng)的t值;不存在,說(shuō)明理由;
          (3)設(shè)PQ的長(zhǎng)為x(cm),試確定y與x之間的關(guān)系式.

          【答案】分析:(1)本題要分情況進(jìn)行討論:①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP中根據(jù)BP,BQ的表達(dá)式和∠B的度數(shù)進(jìn)行求解即可.
          (2)本題可先用△ABC的面積-△PBQ的面積表示出四邊形APQC的面積,即可得出y,t的函數(shù)關(guān)系式,然后另y等于三角形ABC面積的三分之二,可得出一個(gè)關(guān)于t的方程,如果方程無(wú)解則說(shuō)明不存在這樣的t值,如果方程有解,那么求出的t值就是題目所求的值.
          (3)可過(guò)P作PM⊥BC于M,先在直角三角形PQM中,用t表示出x,然后將x替換掉(2)中得出的y,t的函數(shù)關(guān)系式中t的值,即可得出y,x的函數(shù)關(guān)系式.
          解答:解:(1)根據(jù)題意得AP=tcm,BQ=tcm,
          △ABC中,AB=BC=3cm,∠B=60°,
          ∴BP=(3-t)cm,
          △PBQ中,BP=3-t,BQ=t,若△PBQ是直角三角形,則
          ∠BQP=90°或∠BPQ=90°,
          當(dāng)∠BQP=90°時(shí),BQ=BP,
          即t=(3-t),t=1(秒),
          當(dāng)∠BPQ=90°時(shí),BP=BQ,
          3-t=t,t=2(秒),
          答:當(dāng)t=1秒或t=2秒時(shí),△PBQ是直角三角形.

          (2)過(guò)P作PM⊥BC于M,
          △BPM中,sin∠B=
          ∴PM=PB•sin∠B=(3-t),
          ∴S△PBQ=BQ•PM=•t•(3-t),
          ∴y=S△ABC-S△PBQ,
          =×32×-•t•(3-t),
          =t2-t+,
          ∴y與t的關(guān)系式為y=t2-t+
          假設(shè)存在某一時(shí)刻t,使得四邊形APQC的面積是△ABC面積的,
          則S四邊形APQC=S△ABC,
          t2-t+=××32×
          ∴t2-3t+3=0,
          ∵(-3)2-4×1×3<0,
          ∴方程無(wú)解,
          ∴無(wú)論t取何值,四邊形APQC的面積都不可能是△ABC面積的

          (3)在Rt△PQM中,∵M(jìn)Q=|BM-BQ|=|(1-t)|,
          MQ2+PM2=PQ2,
          ∴x2=[(1-t)]2+[(3-t)]2,
          =(t2-2t+1)+(9-6t+t2),
          =(4t2-12t+12)=3t2-9t+9,
          ∴t2-3t=(x2-9),
          ∵y=t2-t+,
          ∴y=t2-t+=×(x2-9)+=x2+,
          ∴y與x的關(guān)系式為y=x2+
          點(diǎn)評(píng):本題主要考查了直角三角形的判定、圖形面積的求法、勾股定理以及二次函數(shù)的應(yīng)用等知識(shí)點(diǎn).考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:2011年湖北省鄂州市花湖經(jīng)濟(jì)開(kāi)發(fā)區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

          (2007•青島)已知:如圖,△ABC是邊長(zhǎng)3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),解答下列問(wèn)題:
          (1)當(dāng)t為何值時(shí),△PBQ是直角三角形?
          (2)設(shè)四邊形APQC的面積為y(cm2),求y與t的關(guān)系式;是否存在某一時(shí)刻t,使四邊形APQC的面積是△ABC面積的三分之二?如果存在,求出相應(yīng)的t值;不存在,說(shuō)明理由;
          (3)設(shè)PQ的長(zhǎng)為x(cm),試確定y與x之間的關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

          (2007•青島)已知:如圖,△ABC是邊長(zhǎng)3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),解答下列問(wèn)題:
          (1)當(dāng)t為何值時(shí),△PBQ是直角三角形?
          (2)設(shè)四邊形APQC的面積為y(cm2),求y與t的關(guān)系式;是否存在某一時(shí)刻t,使四邊形APQC的面積是△ABC面積的三分之二?如果存在,求出相應(yīng)的t值;不存在,說(shuō)明理由;
          (3)設(shè)PQ的長(zhǎng)為x(cm),試確定y與x之間的關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2009年山東省日照市中考數(shù)學(xué)模擬試卷2(丁文斌)(解析版) 題型:解答題

          (2007•青島)已知:如圖,△ABC是邊長(zhǎng)3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),解答下列問(wèn)題:
          (1)當(dāng)t為何值時(shí),△PBQ是直角三角形?
          (2)設(shè)四邊形APQC的面積為y(cm2),求y與t的關(guān)系式;是否存在某一時(shí)刻t,使四邊形APQC的面積是△ABC面積的三分之二?如果存在,求出相應(yīng)的t值;不存在,說(shuō)明理由;
          (3)設(shè)PQ的長(zhǎng)為x(cm),試確定y與x之間的關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2007年山東省青島市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2007•青島)已知:如圖,△ABC是邊長(zhǎng)3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),解答下列問(wèn)題:
          (1)當(dāng)t為何值時(shí),△PBQ是直角三角形?
          (2)設(shè)四邊形APQC的面積為y(cm2),求y與t的關(guān)系式;是否存在某一時(shí)刻t,使四邊形APQC的面積是△ABC面積的三分之二?如果存在,求出相應(yīng)的t值;不存在,說(shuō)明理由;
          (3)設(shè)PQ的長(zhǎng)為x(cm),試確定y與x之間的關(guān)系式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案