【題目】已知拋物線.
(Ⅰ)若拋物線的頂點(diǎn)為(-2,-4),拋物線經(jīng)過(guò)點(diǎn)
(-4,0).
①求該拋物線的解析式;
②連接,把
所在直線沿
軸向上平移,使它經(jīng)過(guò)原點(diǎn)
,得到直線
,點(diǎn)
是直線
上一動(dòng)點(diǎn).
設(shè)以點(diǎn),
,
,
為頂點(diǎn)的四邊形的面積為
,點(diǎn)
的橫坐標(biāo)為
,當(dāng)
≤
≤
時(shí),求
的取值范圍;
(Ⅱ)若>0,
>1,當(dāng)
時(shí),
,當(dāng)0<
<
時(shí),
>0,試比較
與1的大小,并說(shuō)明理由.
【答案】(Ⅰ)①該拋物線的解析式為;②當(dāng)點(diǎn)
在第二象限時(shí),
<0,
的取值范圍是
≤
≤
,當(dāng)點(diǎn)
在第四象限時(shí),
>0,
的取值范圍是
≤
≤
;(Ⅱ)
≤1.
【解析】試題分析:(Ⅰ)①用頂點(diǎn)式即可求出拋物線的解析式;
②首先可以得出直線AB和直線l的解析式.然后分兩種情況討論:①當(dāng)P在第二象限時(shí),②當(dāng)P在第四象限時(shí).
(Ⅱ)由當(dāng)時(shí),
,得到
.由
時(shí),
,知拋物線與
軸的一個(gè)公共點(diǎn)為(
,0).由0<
<
時(shí),
>0,知拋物線的對(duì)稱軸
≥
,從而得到
≤
,即可得到結(jié)論.
試題解析:解:(Ⅰ)①設(shè)拋物線的解析式為.
∵拋物線經(jīng)過(guò)點(diǎn)(-4,0),∴
.解得:
,∴
,∴該拋物線的解析式為
.
②設(shè)直線的解析式為
,由
(-2,-4),
(-4,0),得:
,解這個(gè)方程組,得:
,∴直線
的解析式為
.
∵直線與
平行,且過(guò)原點(diǎn),∴直線
的解析式為
.
當(dāng)點(diǎn)在第二象限時(shí),
<0,如圖,
.
,∴
(
<0).
∵≤
≤
,∴
,即
,
解此不等式組,得: ≤
≤
.
∴的取值范圍是
≤
≤
.
當(dāng)點(diǎn)在第四象限時(shí),
>0,過(guò)點(diǎn)
,
分別作
軸的垂線,垂足為
,
,則:
·
·
·
.
∵,∴
(
>0).
∵≤
≤
,∴
,即
,
解此不等式組,得: ≤
≤
.
∴的取值范圍是
≤
≤
.
(Ⅱ)∵當(dāng)時(shí),
,∴
.
∵>1,∴
,
.
由時(shí),
,知拋物線與
軸的一個(gè)公共點(diǎn)為(
,0).
把代入
,得:
,∴拋物線與
軸的交點(diǎn)為(0,
).
由>0知拋物線開口向上,再由0<
<
時(shí),
>0,知拋物線的對(duì)稱軸
≥
,∴
≤
.由
得:
≤
,∴
≤1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,海中有一小島P,在距小島P的海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時(shí)測(cè)得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無(wú)觸礁危險(xiǎn)?請(qǐng)通過(guò)計(jì)算加以說(shuō)明.如果有危險(xiǎn),輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過(guò)這一海域?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】工廠加工某種茶葉,計(jì)劃一周生產(chǎn)千克,平均每天生產(chǎn)
千克,由于各種原因?qū)嶋H每天產(chǎn)量與計(jì)劃量相比有出入,某周七天的生產(chǎn)情況記錄如下(超產(chǎn)為正、減產(chǎn)為負(fù)):
,
,
,
,
,
,
.
()這一周的實(shí)際產(chǎn)量是多少千克?
()該廠規(guī)定工人工資參照平均產(chǎn)量計(jì)發(fā),每千克
元.若超產(chǎn),則超產(chǎn)的部分每千克
元;若低于平均產(chǎn)量,按實(shí)際產(chǎn)量計(jì)發(fā),而且每少
千克扣除
元,那么該工廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠一周計(jì)劃每日生產(chǎn)自行車100輛,由于工人實(shí)行輪休,每日上班人數(shù)不一定相等,實(shí)際每日生產(chǎn)量與計(jì)劃量相比情況如下表(以計(jì)劃量為標(biāo)準(zhǔn),增加的車輛數(shù)記為正數(shù),減少的車輛數(shù)記為負(fù)數(shù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減(輛) | -1 | +3 | -2 | -4 | +7 | -5 | -10 |
(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?
(2)本周總的生產(chǎn)量是多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,對(duì)角線BD平分∠ABC,過(guò)點(diǎn)A作AE∥BD,交CD的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)E作EF⊥BC,交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:四邊形ABCD是菱形;(2)若∠ABC=45°,BC=1,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與原點(diǎn)重合,頂點(diǎn)A,C分別在x軸,y軸上,反比例函數(shù)的圖象與正方形的兩邊AB,BC分別交于點(diǎn)M,N,ND⊥x軸,垂足為D,連接OM,ON,MN.下列結(jié)論:①△OCN≌△OAM;②ON=MN;③四邊形DAMN與△MON面積相等;④若∠MON=45°,MN=2,則點(diǎn)C的坐標(biāo)為(0, +1).其中正確結(jié)論的序號(hào)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A,C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線y=–x+3交AB,BC于點(diǎn)M,N,反比例函數(shù)
的圖象經(jīng)過(guò)點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在x軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問題情填,
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng),如圖1,將矩形紙片ABCD沿對(duì)角線AC剪開,得到△ABC和△ACD、并且量得AB=2cm,AC=4cm.
操作發(fā)現(xiàn):
(1)將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn)∠α,使∠α=∠BAC,得到加圖2所示的△AC′D,過(guò)點(diǎn)C作AC′的平行線,與DC′的延長(zhǎng)線交于點(diǎn)E,則四邊形ACEC'的形狀是_________;
(2)創(chuàng)新小組將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使B,A,D三點(diǎn)在同一條直線上,得到如圖3所示的△AC′D,連接CC′,取CC'的中點(diǎn)F,連精AF并延長(zhǎng)到點(diǎn)G,使FG=AF,連接CG,C′G,得到四邊形ACGC′,發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC沿著BD方向平移,使點(diǎn)B與點(diǎn)A重合,此時(shí)A點(diǎn)平移至A′點(diǎn),A′C與BC′相交于點(diǎn)H.如圖4所示,連接CC',試求CH的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A. C分別在x、y軸的正半軸上,點(diǎn)D為BC邊上的點(diǎn),反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)D(m,2)和AB邊上的點(diǎn)E(3,
).
(1)求反比例函數(shù)的表達(dá)式和m的值;
(2)將矩形OABC的進(jìn)行折疊,使點(diǎn)O于點(diǎn)D重合,折痕分別與x軸、y軸正半軸交于點(diǎn)F,G,求折痕FG所在直線的函數(shù)關(guān)系式。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com