日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,∠ABM90°,⊙O分別切AB、BM于點DEAC切⊙O于點F,交BM于點CCB不重合).

          1)用直尺和圓規(guī)作出AC(保留作圖痕跡,不寫作法);

          2)若⊙O半徑為1,AD4,求AC的長.

          【答案】(1)見解析 (2)

          【解析】

          1)根據(jù)題意利用尺規(guī)作圖作出AC即可;
          2)先證明矩形ODBE是正方形,再利用正方形的性質(zhì)和勾股定理即可解答.

          1)如圖,AC即為所求;

          2)解:連OD、OE

          O分別切AB、BM于點D、E,

          ODAB,OEBC

          ODB90°,∠OEB90°

          ABM90°,

          四邊形ODBE是矩形.

          ODOE,

          矩形ODBE是正方形.

          BDBEOD1

          O分別切ABAC于點D、F,

          AFAD4

          同理 CFCE

          RtABC中,∠B90°,

          AC2AB2BC2

          (CE4)2(CE1)252

          解得 CE

          ACAFCF

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】解下列一元二次方程:

          12x+32xx+3).

          2x22x30

          32x29x+80

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】若關于的方程有非負實數(shù)解,關于的一次不等式組,有解,則滿足這兩個條件的所有整數(shù)的值的和是

          A.-5B.-6C.-7D.-8

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知⊙O經(jīng)過四邊形ABCDB、D兩點,并與四條邊分別交于點E、FG、H,且

          1)如圖①,連接BD,若BD是⊙O的直徑,求證:∠A=∠C;

          2)如圖②,若的度數(shù)為θ,∠Aα,∠Cβ,請直接寫出θ、αβ之間的數(shù)量關系.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】解方程

          (1)x2+1=3x

          (2)(x﹣2)(x﹣3)=12

          (3)(2x﹣3)2+x(2x﹣3)=0(因式分解法)

          (4)2x2﹣4x﹣1=0(用配方法).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】平移拋物線,下列哪種平移方法不能使平移后的拋物線經(jīng)過原點( )

          A.向左平移2個單位B.向右平移5個單位

          C.向上平移10個單位D.向下平移20個單位

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知拋物線 軸的兩個交點間的距離為2

          1)若此拋物線的對稱軸為直線 ,請判斷點(3,3)是否在此拋物線上?

          2)若此拋物線的頂點為(St),請證明

          3)當時,求的取值范圍

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.

          (1)若O、C、A在一條直線上,連AD、BC,分別取AD、BC的中點M、N如圖(1),求出線段MN、AC之間的數(shù)量關系;

          (2)若將△OCD繞O旋轉(zhuǎn)到如圖(2)的位置,連AD、BC,取BC的中點M,請?zhí)骄烤段OM、AD之間的關系,并證明你的結(jié)論;

          (3)若將△OCD由圖(1)的位置繞O順時針旋轉(zhuǎn)角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,請直接寫出此時△ABC的面積;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例.

          原題:如圖①,點分別在正方形的邊上,,連接,則,試說明理由.

          1)思路梳理

          因為,所以把繞點逆時針旋轉(zhuǎn)90°,可使 重合.因為,所以,點共線.

          根據(jù) ,易證 ,得.請證明.

          2)類比引申

          如圖②,四邊形中,,,點分別在邊上,.都不是直角,則當滿足等量關系時,仍然成立,請證明.

          3)聯(lián)想拓展

          如圖③,在中,,點均在邊上,且.猜想應滿足的等量關系,并寫出證明過程.

          查看答案和解析>>

          同步練習冊答案