日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過點(diǎn)C,且對稱軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動點(diǎn),設(shè)運(yùn)動時間為t秒.
          (1)填空:點(diǎn)A坐標(biāo)為;拋物線的解析式為
          (2)在圖①中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個單位/秒的速度運(yùn)動,同時,點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個單位/秒的速度運(yùn)動,當(dāng)一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)隨之停止運(yùn)動.當(dāng)t為何值時,△PCQ為直角三角形?

          (3)在圖②中,若點(diǎn)P在對稱軸上從點(diǎn)A開始向點(diǎn)B以1個單位/秒的速度運(yùn)動,過點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時,△ACQ的面積最大?最大值是多少?

          【答案】
          (1)(1,4);y=﹣(x﹣1)2+4
          (2)

          解:依題意有:OC=3,OE=4,

          ∴CE= = =5,

          當(dāng)∠QPC=90°時,

          ∵cos∠QCP= =

          = ,

          解得t=

          當(dāng)∠PQC=90°時,

          ∵cos∠QCP= = ,

          = ,

          解得t=

          ∴當(dāng)t= 或t= 時,△PCQ為直角三角形;


          (3)

          解:∵A(1,4),C(3,0),

          設(shè)直線AC的解析式為y=kx+b,則 ,解得

          故直線AC的解析式為y=﹣2x+6.

          ∵P(1,4﹣t),將y=4﹣t代入y=﹣2x+6中,得x=1+

          ∴Q點(diǎn)的橫坐標(biāo)為1+

          將x=1+ 代入y=﹣(x﹣1)2+4中,得y=4﹣

          ∴Q點(diǎn)的縱坐標(biāo)為4﹣ ,

          ∴QF=(4﹣ )﹣(4﹣t)=t﹣ ,

          ∴SACQ=SAFQ+SCFQ

          = FQAG+ FQDG

          = FQ(AG+DG)

          = FQAD

          = ×2(t﹣

          =﹣ +t

          =﹣ (t2+4﹣4t﹣4)

          =﹣ (t﹣2)2+1,

          ∴當(dāng)t=2時,△ACQ的面積最大,最大值是1.


          【解析】解:(1)∵拋物線的對稱軸為x=1,矩形OCDE的三個頂點(diǎn)分別是C(3,0),D(3,4),E(0,4),點(diǎn)A在DE上,
          ∴點(diǎn)A坐標(biāo)為(1,4),
          設(shè)拋物線的解析式為y=a(x﹣1)2+4,
          把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,
          解得a=﹣1.
          故拋物線的解析式為y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;
          (1)根據(jù)拋物線的對稱軸與矩形的性質(zhì)可得點(diǎn)A坐標(biāo),根據(jù)待定系數(shù)法可得拋物線的解析式;(2)先根據(jù)勾股定理可得CE,再分兩種情況:當(dāng)∠QPC=90°時;當(dāng)∠PQC=90°時;討論可得△PCQ為直角三角形時t的值;(3)根據(jù)待定系數(shù)法可得直線AC的解析式,根據(jù)SACQ=SAFQ+SCPQ可得SACQ=﹣ (t﹣2)2+1,依此即可求解.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對稱軸x=﹣1,給出下列結(jié)果: ①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,
          則正確的結(jié)論是(

          A.①②③④
          B.②④⑤
          C.②③④
          D.①④⑤

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知矩形ABCD 中,E、F 分別為BC、AD 上的點(diǎn),將四邊形ABEF 沿直線EF 折疊后,點(diǎn)B 落在CD 邊上的點(diǎn)G 處,點(diǎn)A 的對應(yīng)點(diǎn)為點(diǎn)H.再將折疊后的圖形展開,連接BF、GF、BG,若BF⊥GF.
          (1)求證:△ABF≌△DFG;
          (2)已知AB=3,AD=5,求tan∠CBG 的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知BD,CE是△ABC的兩條高,直線BD,CE相交于點(diǎn)H.

          (1)若∠BAC=100°,求∠DHE的度數(shù);

          (2)若△ABC中∠BAC=50°,直接寫出∠DHE的度數(shù)是____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平行四邊形ABCD中,點(diǎn)E在AD邊上,連接BE、CE,EB平分∠AEC
          (1)如圖1,判斷△BCE的形狀,并說明理由;
          (2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,P是AD上一動點(diǎn),O為BD的中點(diǎn),連接PO并延長,交BC于點(diǎn)Q.

          (1) 求證:四邊形PBQD是平行四邊形

          (2) 若AD=6cm,AB=4cm, 點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)D運(yùn)動(不與點(diǎn)D重合),設(shè)點(diǎn)P運(yùn)動時間為t s , 請用含t的代數(shù)式表示PD的長,并求出當(dāng)t為何值時,四邊形PBQD是菱形。并求出此時菱形的周長。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知過點(diǎn)(2,-1),與軸交于點(diǎn)A,F點(diǎn)為(1,2).

          (Ⅰ)求的值及A點(diǎn)的坐標(biāo);

          (Ⅱ)將函數(shù)的圖象沿方向向上平移得到函數(shù),其圖象與軸交于點(diǎn)Q,且OQ=QF,求平移后的函數(shù)的解析式;

          (Ⅲ)若點(diǎn)A關(guān)于的對稱點(diǎn)為K,請求出直線FK與軸的交點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知直線l:,過點(diǎn)M(1,0)作x軸的垂線交直線l于點(diǎn)N,過點(diǎn)N作直線l的垂線交x軸于點(diǎn)M1;過點(diǎn)M1x軸的垂線交直線lN1,過點(diǎn)N1作直線l的垂線交x軸于點(diǎn)M2,…;按此作法繼續(xù)下去,則點(diǎn)M5的坐標(biāo)為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于

          查看答案和解析>>

          同步練習(xí)冊答案