日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•工業(yè)園區(qū)一模)在△ABC中,AB=AC=5,∠A是銳角,sinA=
          2425
          ,
          (1)如圖1,作BD⊥AC垂足為D,求BD、BC的長:
          (2)如圖2,小明同學(xué)過點(diǎn)A作AE⊥BC垂足為E,他發(fā)現(xiàn)直線AE平分△ABC的周長和面積,他想是否還存在其它平分△ABC的周長和面積的直線?請你參與小明的探究,如果存在,請說明理由,同時(shí)指出有幾條直線.(注:備用圖不夠用可以重新畫圖)
          分析:(1)由BD垂直于AC,得到三角形ABD為直角三角形,根據(jù)AB及sinA的值,利用銳角三角函數(shù)定義求出BD及AD的長,再由AC-AD求出DC的長,在直角三角形BDC中,利用勾股定理即可求出BC的長;
          (2)還存在2條其它平分△ABC的周長和面積的直線,理由為:若直線經(jīng)過B(或C)點(diǎn),由直線平分△ABC的面積,則直線必經(jīng)過AC(或AB)的中點(diǎn),而此時(shí)直線必不平分△ABC的周長,故直線不經(jīng)過△ABC的頂點(diǎn),分兩種情況考慮:(i)直線與AB(或AC)、BC相交,設(shè)直線與AB、BC相交于點(diǎn)D、E,過A、D分別作BC的垂線,垂足為F、H點(diǎn),如備用圖1所示,假設(shè)DE平分三角形的周長,設(shè)BD=5k,則DF=4k,BE=8-5k,利用三角形的面積公式表示出BDF的面積,根據(jù)此三角形面積為三角形ABC面積的一半列出關(guān)于k的方程,求出方程的解得到k的值,可得出在BC上取BE=5,在BA上取BD=3,過D、E的直線就是所求的,同理AC,BC相交的直線也存在一條;(ii)直線與AB,AC相交,設(shè)直線與AB,AC分別交于D,E,過D作DF⊥AC,垂足為F點(diǎn),如備用圖2所示,設(shè)AE=x,則AD=8-x,根據(jù)三角形ADE的面積為三角形ABC面積的一半列出關(guān)于x的方程,求出方程的解得到x的值,經(jīng)判斷不合題意,舍去,綜上,得到滿足題意的直線有2條.
          解答:解:(1)∵BD⊥AC,
          ∴∠ADB=90°,
          ∵在Rt△ABD中,AB=AC=5,sinA=
          24
          25
          ,
          ∴BD=ABsinA=5×
          24
          25
          =
          24
          5

          ∴根據(jù)勾股定理得:AD=
          25-(
          24
          5
          )
          2
          =
          7
          5
          ,
          ∴DC=AC-AD=5-
          7
          5
          =
          18
          5
          ,
          在Rt△BCD中,根據(jù)勾股定理得:BC=
          (
          18
          5
          )
          2
          +(
          24
          5
          )
          2
          =6;
          (2)還存在2條其它平分△ABC的周長和面積的直線,理由為:
          若直線經(jīng)過B(或C)點(diǎn),由直線平分△ABC的面積,則直線必經(jīng)過AC(或AB)的中點(diǎn),
          而此時(shí)直線必不平分△ABC的周長,故直線不經(jīng)過△ABC的頂點(diǎn),
          分兩種情況考慮:
          (i)直線與AB(或AC)、BC相交,設(shè)直線與AB、BC相交于點(diǎn)D、E,過A、D分別作BC的垂線,垂足為F、H點(diǎn),
          如備用圖1所示:
          ∵AB=AC=5,AH⊥BC,
          ∴BH=CH=
          1
          2
          BC=3,
          在Rt△ABH中,根據(jù)勾股定理得:AH=
          AB2-BH2
          =4,
          ∴∠DFB=∠AHB=90°,又∠B=∠B,
          ∴△BDF∽△BAH,
          ∴BF:FD:BD=BH:AH:AB=3:4:5,
          又∵三角形ABC的周長為5+5+6=16,
          ∴BD+BE=8,
          設(shè)BD=5k,則DF=4k,BE=8-5k,
          ∴S△BDE=
          1
          2
          S△ABC=
          1
          4
          BC•AH=6,即
          1
          2
          BE•DF=
          4k(8-5k)
          2
          =6,
          整理得:5k2-8k+3=0,
          解得:k=
          3
          5
          或k=1(舍去),
          這時(shí)在BC上取BE=5,在BA上取BD=3,過D、E的直線就是所求的,
          同理AC,BC相交的直線也存在一條;
          (ii)直線與AB,AC相交,設(shè)直線與AB,AC分別交于D,E,過D作DF⊥AC,垂足為F點(diǎn),
          如備用圖2所示:
          設(shè)AE=x,則AD=8-x,
          ∵在Rt△ADF中,sinA=
          24
          25
          ,
          ∴DF=ADsinA=
          24
          25
          (8-x),
          當(dāng)S△AED=
          1
          2
          AE•DF=
          1
          2
          •x•
          24
          25
          (8-x)=6,
          整理得:2x2-16x+25=0,
          解得:x1=4+
          14
          2
          >5(舍去),x2=4-
          14
          2
          ,
          則AD=8-x=4+
          14
          2
          >5(不合題意,舍去),
          綜上,還存在2條其它平分△ABC的周長和面積的直線.
          點(diǎn)評:此題考查了相似性綜合題,涉及的知識有:勾股定理,銳角三角函數(shù)定義,一元二次方程的應(yīng)用,以及解直角三角形,利用了數(shù)形結(jié)合及分類討論的思想,是一道多知識的探究題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•工業(yè)園區(qū)一模)如圖,A是反比例函數(shù)圖象上一點(diǎn),過點(diǎn)A作AB⊥y軸于點(diǎn)B,點(diǎn)C、D為x軸上動(dòng)點(diǎn),若CD=3AB,四邊形ABCD的面積為4,則這個(gè)反比例函數(shù)的解析式為
          y=
          2
          x
          y=
          2
          x

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•工業(yè)園區(qū)一模)如圖:二次函數(shù)y=ax2+bx+2的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),若AC⊥BC,則a的值為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•工業(yè)園區(qū)一模)據(jù)報(bào)道,蘇州工業(yè)園區(qū)市政物業(yè)管理有限公司通過合理劃分照明等級區(qū)域、合理控制開閉燈時(shí)間及區(qū)域等管理方法,每年節(jié)電約400萬度;請將這一數(shù)據(jù)用科學(xué)記數(shù)法表示為
          4×106
          4×106
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•工業(yè)園區(qū)一模)如圖,等腰△AEF的腰長與菱形ABCD的邊長相等,其底邊上的點(diǎn)E、F分別在BC、CD上,若∠EAF=63°,則∠B=
          81
          81
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•工業(yè)園區(qū)一模)如圖1,A(-1,0)、B(0,2),以AB為邊作正方形ABCD,則D點(diǎn)的坐標(biāo)(
          -3
          -3
          ,
          1
          1
          ).
          (1)如圖2,如果將正方形ABCD沿AB翻折后得到正方形ABEF,拋物線y=ax2+ax+b經(jīng)過點(diǎn)D、F,求拋物線的解析式:
          (2)如圖3,P為BD延長線上一動(dòng)點(diǎn),過A、B、P三點(diǎn)作⊙O',連接AP,在⊙O'上另有一點(diǎn)Q,且AQ=AP,AQ交BD于點(diǎn)G,連接BQ.
          下列結(jié)論:①BP+BQ的值不變;②
          BQ
          AQ
          =
          BG
          AG
          ,是否成立,并就你的判斷加以說明.

          查看答案和解析>>

          同步練習(xí)冊答案