日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 探究問題:
          (1)方法感悟:
          如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
          感悟解題方法,并完成下列填空:
          將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:
          AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
          ∴∠ABG+∠ABF=90°+90°=180°,
          因此,點G,B,F(xiàn)在同一條直線上.
          ∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
          ∵∠1=∠2,∴∠1+∠3=45°.
          即∠GAF=∠______.
          又AG=AE,AF=AF
          ∴△GAF≌______.
          ∴______=EF,故DE+BF=EF.

          (2)方法遷移:
          如圖②,將Rt△ABC沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.

          (3)問題拓展:
          如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足∠EAF=∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).

          【答案】分析:(1)利用角之間的等量代換得出∠GAF=∠FAE,再利用SAS得出△GAF≌△EAF,得出答案;
          (2)作出∠4=∠1,利用已知得出∠GAF=∠FAE,再證明△AGF≌△AEF,即可得出答案;
          (3)根據(jù)角之間關(guān)系,只要滿足∠B+∠D=180°時,就可以得出三角形全等,即可得出答案.
          解答:解:(1)根據(jù)等量代換得出∠GAF=∠FAE,
          利用SAS得出△GAF≌△EAF,
          ∴GF=EF,
          故答案為:FAE;△EAF;GF;

          (2)證明:延長CF,作∠4=∠1,
          ∵將Rt△ABC沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB,
          ∴∠1+∠2=∠3+∠5,
          ∠2+∠3=∠1+∠5,
          ∵∠4=∠1,
          ∴∠2+∠3=∠4+∠5,
          ∴∠GAF=∠FAE,
          ∵在△AGB和△AED中,

          ∴△AGB≌△AED(ASA),
          ∴AG=AE,BG=DE,
          ∵在△AGF和△AEF中,

          ∴△AGF≌△AEF(SAS),
          ∴GF=EF,
          ∴DE+BF=EF;

          (3)當(dāng)∠B與∠D滿足∠B+∠D=180°時,可使得DE+BF=EF.
          點評:此題主要考查了全等三角形的判定以及折疊的性質(zhì)和旋轉(zhuǎn)變換性質(zhì)等知識,根據(jù)題意作出與已知相等的角,利用三角形全等是解決問題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          探究問題:
          (1)方法感悟:
          如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
          感悟解題方法,并完成下列填空:
          將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:
          AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
          ∴∠ABG+∠ABF=90°+90°=180°,
          因此,點G,B,F(xiàn)在同一條直線上.
          ∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
          ∵∠1=∠2,∴∠1+∠3=45°.
          即∠GAF=∠
           

          又AG=AE,AF=AF
          ∴△GAF≌
           

           
          =EF,故DE+BF=EF.
          (2)方法遷移:
          如圖②,將Rt△ABC沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=
          1
          2
          ∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.
          (3)問題拓展:
          如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足∠EAF=
          1
          2
          ∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:湖南省中考真題 題型:解答題

          探究問題:
          (1)方法感悟:
          如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF。
          感悟解題方法,并完成下列填空:
          將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:
          AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
          ∴∠ABG+∠ABF=90°+90°=180°,
          因此,點G,B,F(xiàn)在同一條直線上,
          ∵∠EAF=45°,
          ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°,
          ∵∠1=∠2,
          ∴∠1+∠3=45°,
          即∠GAF=∠_________,
          又AG=AE,AF=AF,
          ∴△GAF≌_______,
          ∴_________=EF,
          故DE+BF=EF;
          (2)方法遷移:
          如圖②,將Rt△ABC沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB,試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想;
          (3)問題拓展:
          如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足∠EAF=∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時,可使得DE+BF=EF,請直接寫出你的猜想(不必說明理由)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012年云南省中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

          探究問題:
          (1)方法感悟:
          如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
          感悟解題方法,并完成下列填空:
          將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:
          AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
          ∴∠ABG+∠ABF=90°+90°=180°,
          因此,點G,B,F(xiàn)在同一條直線上.
          ∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
          ∵∠1=∠2,∴∠1+∠3=45°.
          即∠GAF=∠______.
          又AG=AE,AF=AF
          ∴△GAF≌______.
          ∴______=EF,故DE+BF=EF.

          (2)方法遷移:
          如圖②,將Rt△ABC沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.

          (3)問題拓展:
          如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足∠EAF=∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012年河南省南陽市唐河縣英才學(xué)校中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

          探究問題:
          (1)方法感悟:
          如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
          感悟解題方法,并完成下列填空:
          將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:
          AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
          ∴∠ABG+∠ABF=90°+90°=180°,
          因此,點G,B,F(xiàn)在同一條直線上.
          ∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
          ∵∠1=∠2,∴∠1+∠3=45°.
          即∠GAF=∠______.
          又AG=AE,AF=AF
          ∴△GAF≌______.
          ∴______=EF,故DE+BF=EF.

          (2)方法遷移:
          如圖②,將Rt△ABC沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.

          (3)問題拓展:
          如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足∠EAF=∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).

          查看答案和解析>>

          同步練習(xí)冊答案