日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 探索研究:
          通過對一次函數(shù)、反比例函數(shù)的學習.我們積累了一定的經(jīng)驗.下面我們借鑒以往研究函效的經(jīng)驗,探索的數(shù)y=x+
          1
          x
          (x>0)的圖象和性質(zhì).
          (1)填寫下表,畫出函數(shù)的圖象:
          x
          1
          4
          1
          3
          1
          2
          1 2 3 4
          y
          (2)觀察圖象,寫出函數(shù)兩條不同類型的性質(zhì):
          函數(shù)兩條不同類型的性質(zhì)是:當0<x<1時,y 隨x的增大而減小,當x>1時,y 隨x的增大而增大;
          函數(shù)兩條不同類型的性質(zhì)是:當0<x<1時,y 隨x的增大而減小,當x>1時,y 隨x的增大而增大;
          ;
          當x=1時,函數(shù)y=x+
          1
          x
          (x>0)的最小值是2.
          當x=1時,函數(shù)y=x+
          1
          x
          (x>0)的最小值是2.

          知識運用:
          一般函數(shù)y=x+
          a
          x
          (x>0,a>0)也有類似的結論.請利用上面探究函數(shù)性質(zhì)的方法解決下列問題:
          己知一個矩形的面積是4.設矩形的一邊長為x.它的周長為y.求y與x的函數(shù)關系式,井求出:當x取何值時.矩形的周長最?最小值是多少?
          分析:(1)把x的值代入解析式計算即可;
          (2)根據(jù)圖象所反映的特點寫出即可;
          (3)根據(jù)完全平方公式(a+b)2=a2+2ab+b2,進行配方成y=2(
          x
          -
          2
          x
          2+4
          2
          即可求出答案.
          解答:解:(1)填表如下:
          x
          1
          4
          1
          3
          1
          2
          1 2 3 4
          y
          17
          4
          10
          3
          5
          2
          2
          5
          2
          10
          3
          17
          4
          (函數(shù)y=x+
          1
          x
          的圖象如圖:

          (2)①答:函數(shù)兩條不同類型的性質(zhì)是:當0<x<1時,y 隨x的增大而減小,當x>1時,y 隨x的增大而增大;②當x=1時,函數(shù)y=x+
          1
          x
          (x>0)的最小值是2.
          知識運用:∵設矩形的一邊長為x.它的周長為y.
          ∴矩形的另一邊為
          y-2x
          2
          ,
          ∵矩形的面積是4,
          y-2x
          2
          •x=4
          ∴y=2x+
          4
          x

          =2(x+
          2
          x

          =2[(
          x
          2+(
          2
          x
          )2
          -2
          x
          2
          x
          +2
          x
          2
          x
          ]
          =2(
          x
          -
          2
          x
          2+4
          2

          ∴當
          x
          =
          2
          x
          時,即x=
          2
          時,周長有最小值4
          2
          點評:本題是一道二次函數(shù)的綜合試題,考查了描點法畫函數(shù)的圖象的方法,二次函數(shù)最值的運用.反比例函數(shù)的圖象性質(zhì)的運用.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐--應用--探究的過程:
          (1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式.
          (2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
          (3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
          I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸 上.設矩形ABCD的周長為l求l的最大值.
          II•如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q.問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐--應用--探究的過程:
          (1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式.
          (2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
          (3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
          I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸 上.設矩形ABCD的周長為l求l的最大值.
          II•如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q.問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:湖南省中考真題 題型:解答題

          九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐--應用--探究的過程:
          (1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式;
          (2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m,為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
          (3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
          I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸上,設矩形ABCD的周長為l求l的最大值;
          II.如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q,問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由。

          查看答案和解析>>

          科目:初中數(shù)學 來源:2012年河北省唐山市古冶區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

          九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐--應用--探究的過程:
          (1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式.
          (2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
          (3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
          I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸 上.設矩形ABCD的周長為l求l的最大值.
          II•如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q.問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2012年河北省承德三中中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

          九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐--應用--探究的過程:
          (1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式.
          (2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
          (3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
          I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸 上.設矩形ABCD的周長為l求l的最大值.
          II•如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q.問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案