日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,對稱軸為直線x=的拋物線經(jīng)過點A(6,0)和B(0,4).
          (1)求拋物線解析式及頂點坐標;
          (2)設(shè)點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
          (3)在(2)的基礎(chǔ)上試探索:
          ①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
          ②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.
          解:(1)因為拋物線的對稱軸是x=,
          設(shè)解析式為y=a(x﹣2+k.
          把A,B兩點坐標代入上式,得
          解得a=,k=﹣
          故拋物線解析式為y=(x﹣2,頂點為(,﹣);
          (2)∵點E(x,y)在拋物線上,位于第四象限,且坐標適合y=(x﹣2=,
          ∴y<0,即﹣y>0,﹣y表示點E到OA的距離.
          ∵OA是OEAF的對角線,
          ∴S=2S△OAE=2××OA·|y|=﹣6y=﹣4(x﹣2+25.
          ∵拋物線與x軸的兩個交點是(1,0)和(6,0),
          ∴自變量x的取值范圍是1<x<6;
          (3)①根據(jù)題意,當S=24時,即﹣4(x﹣2+25=24.
          化簡,得(x﹣2=
          解得x1=3,x2=4.
          故所求的點E有兩個,
          分別為E1(3,﹣4),E2(4,﹣4),
          點E1(3,﹣4)滿足OE=AE,
          所以平行四邊形OEAF是菱形;
          點E2(4,﹣4)不滿足OE=AE,
          所以平行四邊形OEAF不是菱形;
          ②當OA⊥EF,且OA=EF時,
          平行四邊形OEAF是正方形,
          此時點E的坐標只能是(3,﹣3),
          而坐標為(3,﹣3)的點不在拋物線上,
          故不存在這樣的點E,使平行四邊形OEAF為正方形.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          (2013•莒南縣二模)如圖,對稱軸為直線x=-
          72
          的拋物線經(jīng)過點A(-6,0)和點B(0,4).
          (1)求拋物線的解析式和頂點坐標;
          (2)設(shè)點E(x,y)是拋物線上的一個動點,且位于第三象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求?OEAF的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
          ①當?OEAF的面積為24時,請判斷?OEAF是否為菱形?
          ②是否存在點E,使?OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.•

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,對稱軸為直線x=-2的拋物線經(jīng)過A(-3,0)和B(0,-3).
          (1)求拋物線解析式;
          (2)設(shè)點D(m,n)是拋物線上一動點,且位于第二象限,四邊形ODAE是以O(shè)A為對角線的平行四邊形.
          ①當四邊形ODAE的面積為
          94
          時,請判斷四邊形ODAE是否為菱形?并說明理由;
          ②當點E也剛好落在拋物線上時.求m的值;
          (3)設(shè)拋物線與x軸另一交點為C,拋物線上是否存在點P,使得△PBC為直角三角形?若存在,直接寫出點P坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,對稱軸為直線x=
          72
          的拋物線經(jīng)過點A(6,0)和B(0,4).
          (1)求拋物線解析式及頂點D的坐標;
          (2)設(shè)點E(x,y)是拋物線上位于第四象限內(nèi)一動點,將△OAE繞OA的中點旋轉(zhuǎn)180°,點E落到點F的位置.求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
          ①當四邊形OEAF的面積為24時,請判斷四邊形OEAF的形狀.
          ②是否存在點E,使四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.
          (3)若點P是x軸上一點,以P、A、D為頂點作平行四邊形,該平行四邊形的另一頂點在y軸上,請直接寫出滿足條件的所有點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,對稱軸為直線x=
          72
          的拋物線經(jīng)過點A(6,0)和B(0,4).
          (1)求拋物線解析式及頂點坐標;
          (2)設(shè)點E(x,y)是拋物線第四象限上一動點,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求?OEAF的面積S與x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;
          (3)若S=24,試判斷?OEAF是否為菱形;
          (4)若點E在(1)中的拋物線上,點F在對稱軸上,以O(shè)、E、A、F為頂點的四邊形能否為平行四邊形?若能,求出點E、F的坐標;若不能,請說明理由.(第(4)問不寫解答過程,只寫結(jié)論)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知如圖,對稱軸為直線x=4的拋物線y=ax2+2x與x軸相交于點B、O.
          (1)求拋物線的解析式.
          (2)連接AB,平移AB所在的直線,使其經(jīng)過原點O,得到直線l.點P是l上一動點,當△PAB的周長最小時,求點P的坐標.
          (3)當△PAB的周長最小時,在直線AB的上方是否存在一點Q,使以A,B,Q為頂點的三角形與△POB相似?若存在,直接寫出點Q的坐標;若不存在,說明理由.(規(guī)定:點Q的對應(yīng)頂點不為點O)

          查看答案和解析>>

          同步練習冊答案