日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 操作探究自我操作:如圖1所示,點(diǎn)O為線段MN的中點(diǎn),直線PQ與MN相交于點(diǎn)O,利用此圖,作一對(duì)以點(diǎn)O為對(duì)稱中心的全等△MOA和△NOB,并使A、B兩點(diǎn)都在直線PQ上.(只保留作圖痕跡,不寫(xiě)作法)
          精英家教網(wǎng)
          (1)探究1:如圖2所示,在四邊形ABCD中,AB∥CD,點(diǎn)E為BC的中點(diǎn),∠BAE=∠EAF,AF與DC相交于點(diǎn)F,試探究線段AB與AF,CF之間的等量關(guān)系,并證明你的結(jié)論.
          (2)探究2:如圖3所示,DE,BC相交于點(diǎn)E,BA交DE于點(diǎn)A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.試探究線段AB與DF,CF之間的等量關(guān)系,并證明你的結(jié)論.
          (3)發(fā)現(xiàn):如圖3所示,DE,BC相交于點(diǎn)E,BA交DE于點(diǎn)A,且BE:EC=1:n,∠BAE=∠EDF,CF∥AB.則線段AB與DF,CF之間的等量關(guān)系為
           
          分析:(1)以點(diǎn)O為圓心以任意長(zhǎng)為半徑畫(huà)圓分別交OP于點(diǎn)A,交OQ于點(diǎn)B,連接MA,NB即可;
          (2)延長(zhǎng)AE、DF相交于點(diǎn)M,根據(jù)AB∥CD,求證△AEB≌△CEM,可得AB=CM,再根據(jù)∠BAE=∠EAF,求證MF=AF即可;
          (3)分別延長(zhǎng)DE,CF交于點(diǎn)G,根據(jù)CF∥AB,求證△ABE≌△GCE,得出
          AB
          CG
          =
          BE
          CE
          ,進(jìn)而求得CG=2AB,再根據(jù)∠BAE=∠EDF,求證FG=DF即可.
          解答:精英家教網(wǎng)解:操作探究自我操作,如圖1:

          (1)如圖2,AB=AF-CF.
          延長(zhǎng)AE、DF相交于點(diǎn)M,
          ∵AB∥CD,
          ∴∠BAE=∠M,∠B=ECM,
          又∵BE=CE,精英家教網(wǎng)
          ∴△AEB≌△CEM,
          ∴AB=CM,
          又∵∠BAE=∠EAF,
          ∴∠M=∠EAF,
          ∴MF=AF,
          ∴AB=CM=FM-CF=AF-CF.

          (2)如圖3,分別延長(zhǎng)DE,CF交于點(diǎn)G,
          ∵CF∥AB,
          ∴∠B=∠C,∠BAE=∠G,
          ∴△ABE∽△GCE,
          AB
          CG
          =
          BE
          CE
          ,
          又∵
          BE
          CE
          =
          1
          2

          AB
          CG
          =
          1
          2
          ,即CG=2AB,
          又∵∠BAE=∠EDF,
          ∴∠G=∠EDF,
          ∴FG=DF,
          ∴2AB=GC=FG+CF=DF+CF;

          (3)發(fā)現(xiàn):nAB=DF+CF.
          故答案為:nAB=DF+CF.
          點(diǎn)評(píng):此題主要考查學(xué)生對(duì)全等三角形的判定與性質(zhì)的理解和掌握,解答此題的關(guān)鍵是作好輔助線,利用全等三角形判定定理求證三角形全等.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          操作探究自我操作:如圖1所示,點(diǎn)O為線段MN的中點(diǎn),直線PQ與MN相交于點(diǎn)O,利用此圖,作一對(duì)以點(diǎn)O為對(duì)稱中心的全等△MOA和△NOB,并使A、B兩點(diǎn)都在直線PQ上.(只保留作圖痕跡,不寫(xiě)作法)

          (1)探究1:如圖2所示,在四邊形ABCD中,AB∥CD,點(diǎn)E為BC的中點(diǎn),∠BAE=∠EAF,AF與DC相交于點(diǎn)F,試探究線段AB與AF,CF之間的等量關(guān)系,并證明你的結(jié)論.
          (2)探究2:如圖3所示,DE,BC相交于點(diǎn)E,BA交DE于點(diǎn)A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.試探究線段AB與AF,CF之間的等量關(guān)系,并證明你的結(jié)論.
          (3)發(fā)現(xiàn):如圖3所示,DE,BC相交于點(diǎn)E,BA交DE于點(diǎn)A,且BE:EC=1:n,∠BAE=∠EDF,CF∥AB.則線段AB與DF,CF之間的等量關(guān)系為_(kāi)_____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:河北省模擬題 題型:解答題

          自我操作:如圖1所示,點(diǎn)O為線段MN的中點(diǎn),直線PQ與MN相交于點(diǎn)O,利用此圖,作一對(duì)以點(diǎn)O為對(duì)稱中心的全等△MOA和△NOB,并使A、B兩點(diǎn)都在直線PQ上。(只保留作圖痕跡,不寫(xiě)作法)
          (1)探究1:如圖2所示,在四邊形ABCD中,AB∥CD,點(diǎn)E為BC的中點(diǎn),∠BAE=∠EAF,AF與DC相交于點(diǎn)F,試探究線段AB與AF,CF之間的等量關(guān)系,并證明你的結(jié)論;
          (2)探究2:如圖3所示,DE,BC相交于點(diǎn)E,BA交DE于點(diǎn)A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB。試探究線段AB與DF,CF之間的等量關(guān)系,并證明你的結(jié)論;
          (3)發(fā)現(xiàn):如圖3所示,DE,BC相交于點(diǎn)E,BA交DE于點(diǎn)A,且BE:EC=1:n,∠BAE=∠EDF,CF∥AB。則線段AB與DF,CF之間的等量關(guān)系為_(kāi)____。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2011年河北省唐山市豐南區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

          操作探究自我操作:如圖1所示,點(diǎn)O為線段MN的中點(diǎn),直線PQ與MN相交于點(diǎn)O,利用此圖,作一對(duì)以點(diǎn)O為對(duì)稱中心的全等△MOA和△NOB,并使A、B兩點(diǎn)都在直線PQ上.(只保留作圖痕跡,不寫(xiě)作法)

          (1)探究1:如圖2所示,在四邊形ABCD中,AB∥CD,點(diǎn)E為BC的中點(diǎn),∠BAE=∠EAF,AF與DC相交于點(diǎn)F,試探究線段AB與AF,CF之間的等量關(guān)系,并證明你的結(jié)論.
          (2)探究2:如圖3所示,DE,BC相交于點(diǎn)E,BA交DE于點(diǎn)A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.試探究線段AB與AF,CF之間的等量關(guān)系,并證明你的結(jié)論.
          (3)發(fā)現(xiàn):如圖3所示,DE,BC相交于點(diǎn)E,BA交DE于點(diǎn)A,且BE:EC=1:n,∠BAE=∠EDF,CF∥AB.則線段AB與DF,CF之間的等量關(guān)系為_(kāi)_____.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案