日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在正方形ABCD中,點E、F分別在邊BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面積等于( 。
          A、
          225
          16
          B、
          256
          15
          C、
          256
          17
          D、
          289
          16
          分析:因為AE=4,EF=3,AF=5,AE2+EF2=AF2,所以∠AEF=90°,可證△ABE∽△ECF,從而可得AB:EC=AE:EF=4:3,即EC=
          3
          4
          AB
          =
          3
          4
          BC,BE=
          BC
          4
          =
          AB
          4
          ,在直角三角形ABE中,AB2+BE2=AE2,AB2+
          AB2
          16
          =16,AB2=
          162
          17
          ,所以正方形ABCD面積=AB2=
          256
          17
          解答:解:∵AE=4,EF=3,AF=5
          ∴AE2+EF2=AF2,∴∠AEF=90°
          ∴∠AEB+∠FEC=90°
          ∵正方形ABCD
          ∴∠ABE=∠FCE=90°
          ∵∠CFE+∠CEF=∠EAB+∠AEB=90°
          ∴∠FEC=∠EAB
          ∴△ABE∽△ECF
          ∴EC:AB=EF:AE=3:4,即EC=
          3
          4
          AB
          =
          3
          4
          BC
          ∴BE=
          BC
          4
          =
          AB
          4

          ∵AB2+BE2=AE2,∴AB2+
          AB2
          16
          =16,AB2=
          162
          17

          ∴正方形ABCD面積=AB2=
          256
          17

          故選C.
          點評:本題綜合考查了正方形的性質(zhì)和勾股定理的應用,本題中利用勾股定理得出△AEF是直角三角形是解題的關鍵.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
          (1)求證:點E是邊BC的中點;
          (2)若EC=3,BD=2
          6
          ,求⊙O的直徑AC的長度;
          (3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
          (1)求證:AF=BF;
          (2)如果AB=AC,求證:四邊形AFCG是正方形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•陜西)如圖,正三角形ABC的邊長為3+
          3

          (1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內(nèi)部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
          (2)求(1)中作出的正方形E′F′P′N′的邊長;
          (3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
          2
          ,求另一直角邊BC的長.

          查看答案和解析>>

          同步練習冊答案