日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•遵義)如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點M,N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A,B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,設(shè)移動時間為t(單位:秒,0<t<2.5).
          (1)當(dāng)t為何值時,以A,P,M為頂點的三角形與△ABC相似?
          (2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.
          分析:根據(jù)勾股定理求得AB=5cm.
          (1)分類討論:△AMP∽△ABC和△APM∽△ABC兩種情況.利用相似三角形的對應(yīng)邊成比例來求t的值;
          (2)如圖,過點P作PH⊥BC于點H,構(gòu)造平行線PH∥AC,由平行線分線段成比例求得以t表示的PH的值;然后根據(jù)“S=S△ABC-S△BPH”列出S與t的關(guān)系式S=
          4
          5
          (t-
          3
          2
          2+
          21
          5
          (0<t<2.5),則由二次函數(shù)最值的求法即可得到S的最小值.
          解答:解:∵如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.
          ∴根據(jù)勾股定理,得
          AC2+BC2
          =5cm.
          (1)以A,P,M為頂點的三角形與△ABC相似,分兩種情況:
          ①當(dāng)△AMP∽△ABC時,
          AP
          AC
          =
          AM
          AB
          ,即
          5-2t
          4
          =
          4-t
          5

          解得t=
          3
          2
          ;
          ②當(dāng)△APM∽△ABC時,
          AM
          AC
          =
          AP
          AB
          ,即
          4-t
          4
          =
          5-2t
          5
          ,
          解得t=0(不合題意,舍去);
          綜上所述,當(dāng)t=
          3
          2
          時,以A、P、M為頂點的三角形與△ABC相似;

          (2)存在某一時刻t,使四邊形APNC的面積S有最小值.理由如下:
          假設(shè)存在某一時刻t,使四邊形APNC的面積S有最小值.
          如圖,過點P作PH⊥BC于點H.則PH∥AC,
          PH
          AC
          =
          BP
          BA
          ,即
          PH
          4
          =
          2t
          5
          ,
          ∴PH=
          8
          5
          t,
          ∴S=S△ABC-S△BPN,
          =
          1
          2
          ×3×4-
          1
          2
          ×(3-t)•
          8
          5
          t,
          =
          4
          5
          (t-
          3
          2
          2+
          21
          5
          (0<t<2.5).
          4
          5
          >0,
          ∴S有最小值.
          當(dāng)t=
          3
          2
          時,S最小值=
          21
          5

          答:當(dāng)t=
          3
          2
          時,四邊形APNC的面積S有最小值,其最小值是
          21
          5
          點評:本題綜合考查了相似三角形的判定與性質(zhì)、平行線分線段成比例,二次函數(shù)最值的求法以及三角形面積公式.解答(1)題時,一定要分類討論,以防漏解.另外,利用相似三角形的對應(yīng)邊成比例解題時,務(wù)必找準對應(yīng)邊.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•遵義)如圖,直線l1∥l2,若∠1=140°,∠2=70°,則∠3的度數(shù)是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•遵義)如圖,在4×4正方形網(wǎng)格中,任選取一個白色的小正方形并涂紅,使圖中紅色部分的圖形構(gòu)成一個軸對稱圖形的概率是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•遵義)如圖,將一張矩形紙片ABCD沿直線MN折疊,使點C落在點A處,點D落在點E處,直線MN交BC于點M,交AD于點N.
          (1)求證:CM=CN;
          (2)若△CMN的面積與△CDN的面積比為3:1,求
          MNDN
          的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•遵義)如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為(4,-
          23
          ),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).
          (1)求拋物線的解析式及A,B兩點的坐標;
          (2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,請說明理由;
          (3)以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.

          查看答案和解析>>

          同步練習(xí)冊答案