日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖:菱形ABCD中,AB=2,∠B=120°,E是AB的中點(diǎn),P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),則PE+PB的最小值是________.


          分析:過點(diǎn)E作PE⊥AB,交AC于P,則PA=PB,根據(jù)已知得到PA=2EP,根據(jù)勾股定理可求得PE,PA的值,從而可得到PE+PB的最小值.
          解答:解:當(dāng)點(diǎn)P在AB的中垂線上時(shí),PE+PB有最小值.
          過點(diǎn)E作PE⊥AB,交AC于P,則PA=PB.
          ∵∠B=120°
          ∴∠CAB=30°
          ∴PA=2EP
          ∵AB=2,E是AB的中點(diǎn)
          ∴AE=1
          在Rt△APE中,PA2-PE2=1
          ∴PE=,PA=
          ∴PE+PB=PE+PA=
          故答案為
          點(diǎn)評(píng):本題考查的是中垂線,菱形的鄰角互補(bǔ).勾股定理和最值.本題容易出現(xiàn)錯(cuò)誤的地方是對(duì)點(diǎn)P的運(yùn)動(dòng)狀態(tài)不清楚,無法判斷什么時(shí)候會(huì)使PE+PB成為最小值.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          26、已知:如圖,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點(diǎn),且BE=DF.
          (1)求證:AE=AF;
          (2)若∠B=60°,點(diǎn)E,F(xiàn)分別為BC和CD的中點(diǎn),求證:△AEF為等邊三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,菱形ABCD中,∠A=60°,AB=2,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿B→C→D向終點(diǎn)D運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以相同的速度沿A→D→B向終點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為x秒,當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)△APQ的面積為y,則反映y與x的函數(shù)關(guān)系的圖象是( 。
          A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,菱形ABCD中,∠BAD=60°,M是AB的中點(diǎn),P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),若AB長為2
          3
          ,則PM+PB的最小值是
          3
          3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖:菱形ABCD中,E是AB的中點(diǎn),且CE⊥AB,AB=6cm.
          求:(1)∠BCD的度數(shù);
          (2)對(duì)角線BD的長;
          (3)菱形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,菱形ABCD中,∠ADC=120°,AB=10,
          (1)求BD的長.
          (2)求菱形的面積.

          查看答案和解析>>

          同步練習(xí)冊答案