日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】 如圖1P是菱形ABCD對(duì)角線AC上的一點(diǎn),點(diǎn)EBC的延長(zhǎng)線上,且PE=PB

          1)求證:PD=PE

          2)求證:∠DPE=ABC;

          3)如圖2,當(dāng)四邊形ABCD為正方形時(shí),連接DE,試探究線段DE與線段BP的數(shù)量關(guān)系,并說明理由.

          【答案】(1)詳見解析;(2)詳見解析;(3)DE=BP,理由詳見解析

          【解析】

          1)根據(jù)菱形的性質(zhì)得出BC=DC,∠BCP=DCP,然后利用邊角邊證明BCP≌△DCP得出PB=PD,由已知PE=PB,即可得出結(jié)論;

          2)根據(jù)全等三角形對(duì)應(yīng)角相等可得∠CBP=CDP,根據(jù)等邊對(duì)等角可得∠CBP=E,然后求出∠DPE=DCE,再根據(jù)兩直線平行,同位角相等可得∠DCE=ABC,從而得證;

          3)證出PDE是等腰直角三角形,由等腰直角三角形的性質(zhì)得出DE=PE,即可得出結(jié)論.

          (1)證明:∵四邊形ABCD是菱形,

          BC=DC,∠BCP=DCP,ABDC

          ∵在BCPDCP中,

          ∴△BCP≌△DCPSAS),

          PB=PD,

          PE=PB,

          PD=PE;

          (2)證明:如圖1所示:

          由(1)知,BCP≌△DCP,

          ∴∠CBP=CDP,

          PE=PB,

          ∴∠CBP=E

          ∵∠CFE=DFP(對(duì)頂角相等),

          180°-DFP-CDP=180°-CFE-E,

          即∠DPE=DCE,

          ABCD,

          ∴∠DCE=ABC,

          ∴∠DPE=ABC;

          3)解:DE=BP,理由如下:

          ∵四邊形ABCD是正方形,

          ∴∠ABC=90°,

          由(1)知:PD=BP=PE,

          由(2)知,∠DPE=ABC=90°

          ∴△PDE是等腰直角三角形,

          DE=PE,

          DE=BP

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖 1,在平面直角坐標(biāo)系中,直線l1:yx5x軸,y軸分別交于A.B兩點(diǎn).直線l2:y4xbl1交于點(diǎn) D(38)且與x軸,y軸分別交于C、E.

          (1)求出點(diǎn)A坐標(biāo),直線l2的解析式;

          (2)如圖2,點(diǎn)P為線段AD上一點(diǎn)(不含端點(diǎn)),連接CP,一動(dòng)點(diǎn)QC出發(fā),沿線段CP 以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)P,再沿著線段PD以每秒個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)D停止,求點(diǎn)Q在整個(gè)運(yùn)動(dòng)過程中所用最少時(shí)間與點(diǎn)P的坐標(biāo);

          (3)如圖3,平面直角坐標(biāo)系中有一點(diǎn)G(m,2),使得SCEGSCEB,求點(diǎn)G的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分8分)

          如圖,用兩段等長(zhǎng)的鐵絲恰好可以分別圍成一個(gè)正五邊形和一個(gè)正六邊形,其中正五邊形的邊長(zhǎng)為(),正六邊形的邊長(zhǎng)為()cm(其中),求這兩段鐵絲的總長(zhǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】 如圖,在矩形ABCD中,AB=8,AD=3,點(diǎn)ECD的中點(diǎn),連接AE,將ADE沿直線AE折疊,使點(diǎn)D落在點(diǎn)F處,則線段CF的長(zhǎng)度是______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖A、BC、D為矩形的四個(gè)頂點(diǎn),AB=16cm,AD=6cm動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)B為止,點(diǎn)Q2 cm/s的速度向D移動(dòng)

          (1)PQ兩點(diǎn)從出發(fā)開始到幾秒?四邊形PBCQ的面積為33cm2;

          (2)PQ兩點(diǎn)從出發(fā)開始到幾秒時(shí)?點(diǎn)P和點(diǎn)Q的距離是10cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,M交x軸于A(﹣1,0),B(3,0)兩點(diǎn).交y軸于C(0,3),D(0,1)兩點(diǎn).

          (1)求點(diǎn)M的坐標(biāo);

          (2)求弧BD的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,A,P,B,C是O上的四個(gè)點(diǎn),APC=CPB=60°

          (1)判斷ABC的形狀: ;

          (2)試探究線段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某地一路段修建,甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,若由甲隊(duì)先做5天,再由甲、乙兩隊(duì)合作9天,共完成這項(xiàng)工程的三分之一.

          (1)求甲、乙兩隊(duì)合作完成這項(xiàng)工程需要多少天?

          (2)若甲隊(duì)的工作效率提高20%,乙隊(duì)工作效率提高50%,甲隊(duì)施工1天需付工程款4萬元,乙隊(duì)施工一天需付工程款2.5萬元,現(xiàn)由甲乙兩隊(duì)合作若干天后,再由乙隊(duì)完成剩余部分,在完成此項(xiàng)工程的工程款不超過190萬元的條件下要求盡早完成此項(xiàng)工程,則甲、乙兩隊(duì)至多要合作多少天?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直角中,,以點(diǎn)C為圓心,BC為半徑的圓交AB于點(diǎn)D,交AC于點(diǎn)E.

          ,求弧DE的度數(shù);

          ,,求BD的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案