日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 圖a是一個長為2 m、寬為2 n的長方形, 沿圖中虛線用剪刀均分成四塊小長方形, 然后按圖b的形狀拼成一個正方形

          1.你認為圖b中的陰影部分的正方形的邊長等于                 

          2.請用兩種不同的方法求圖b中陰影部分的面積

          3.觀察圖b你能寫出下列三個代數(shù)式之間的等量關系嗎?

          代數(shù)式:                  

          4.根據(jù)(3)題中的等量關系,解決如下問題:若,求的值

           

          【答案】

           

          1.m-n

          2.

          3.

          4.=29

          【解析】解:(1)觀察圖2,陰影部分的邊長就是矩形的長與寬的差,即(m-n);

                      (2)方法1:∵陰影圖形是邊長為m-n的正方形,

          ∴陰影部分的面積==

                          方法2:∵ 大正方形的邊長為(m+n)

                                 又由圖可知陰影部分的面積=大正方形的面積-4個長為m寬為n的長方形面積

                            ∴陰影部分的面積=

                                                 =

                                                 =

                       (3)

                       (4)由(3)可知

                                              =

           

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          24、如圖所示,圖1是一個長為2m,寬為2n的長方形,沿圖中的虛線剪成四個全等的小長方形,再按圖2圍成一個較大的正方形.

          (1)請用兩種方法表示圖2中陰影部分的面積(只需表示,不必化簡);
          (2)比較(1)的兩種結果,你能得到怎樣的等量關系?
          (3)請你用(2)中得到的等量關系解決下面問題:如果m-n=4,mn=12,求m+n的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          圖1是一個長為2a,寬為2b的長方形,沿圖中虛線剪開,可分成四塊小長方形.
          (1)你認為圖1的長方形面積等于
          4ab
          4ab
          ;
          (2)將四塊小長方形拼成一個圖2的正方形.請用兩種不同的方法求圖2中 陰影部分的面積.           
          方法1:
          (a+b)2-4ab
          (a+b)2-4ab
          ;方法2:
          (a-b)2
          (a-b)2
          ;
          (3)觀察圖2直接寫出代數(shù)式(a+b)2、(a-b)2、ab之間的等量關系
          (a+b)2-4ab=(a-b)2
          (a+b)2-4ab=(a-b)2
          ;
          (4)把四塊小長方形不重疊地放在一個長方形的內(nèi)部(如圖3),未被覆蓋的部分用陰影表示.求兩塊陰影部分的周長和(用含m、n的代數(shù)式表示).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.
          (1)請寫出圖2中陰影部分的面積:
          (m-n)2或(m+n)2-4mn
          (m-n)2或(m+n)2-4mn
          ;
          (2)觀察圖2你能寫出下列三個代數(shù)式之間的等量關系嗎?
          代數(shù)式:(m+n)2,(m-n)2,mn;
          (3)根據(jù)(2)中的等量關系,解決如下問題:若a+b=7,ab=5,求(a-b)2的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖1是一個長為2a,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按如圖2的形狀拼成一個正方形.
          (1)圖2的陰影部分的正方形的邊長是
          a-b
          a-b

          (2)用兩種不同的方法求圖中陰影部分的面積.
          【方法1】S陰影=
          (a-b)2
          (a-b)2
          ;
          【方法2】S陰影=
          (a+b)2-4ab
          (a+b)2-4ab
          ;
          (3)觀察如圖2,寫出(a+b)2,(a-b)2,ab這三個代數(shù)式之間的等量關系.
          (4)根據(jù)(3)題中的等量關系,解決問題:
          若x+y=10,xy=16,求x-y的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).

          (1)圖2中的陰影部分的面積為
          (b-a)2
          (b-a)2
          ;
          (2)觀察圖2請你寫出 (a+b)2、(a-b)2、ab之間的等量關系是
          (a+b)2-(a-b)2=4ab
          (a+b)2-(a-b)2=4ab
          ;
          (3)根據(jù)(2)中的結論,若x+y=5,x•y=
          94
          ,則x-y=
          ±4
          ±4
          ;
          (4)實際上通過計算圖形的面積可以探求相應的等式.如圖3,你有什么發(fā)現(xiàn)?
          (a+b)•(3a+b)=3a2+4ab+b2
          (a+b)•(3a+b)=3a2+4ab+b2

          查看答案和解析>>

          同步練習冊答案