日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•瀘州)如圖,點(diǎn)E是矩形ABCD的邊CD上一點(diǎn),把△ADE沿AE對(duì)折,點(diǎn)D的對(duì)稱點(diǎn)F恰好落在BC上,已知折痕AE=10
          5
          cm,且tan∠EFC=
          3
          4
          ,那么該矩形的周長(zhǎng)為(  )
          分析:根據(jù)矩形的性質(zhì)可得AB=CD,AD=BC,∠B=∠D=90°,再根據(jù)翻折變換的性質(zhì)可得∠AFE=∠D=90°,AD=AF,然后根據(jù)同角的余角相等求出∠BAF=∠EFC,然后根據(jù)tan∠EFC=
          3
          4
          ,設(shè)BF=3x、AB=4x,利用勾股定理列式求出AF=5x,再求出CF,根據(jù)tan∠EFC=
          3
          4
          表示出CE并求出DE,最后在Rt△ADE中,利用勾股定理列式求出x,即可得解.
          解答:解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,
          ∵△ADE沿AE對(duì)折,點(diǎn)D的對(duì)稱點(diǎn)F恰好落在BC上,
          ∴∠AFE=∠D=90°,AD=AF,
          ∵∠EFC+∠AFB=180°-90°=90°,
          ∠BAF+∠AFB=90°,
          ∴∠BAF=∠EFC,
          ∵tan∠EFC=
          3
          4
          ,
          ∴設(shè)BF=3x、AB=4x,
          在Rt△ABF中,AF=
          AB2+BF2
          =
          (4x)2+(3x)2
          =5x,
          ∴AD=BC=5x,
          ∴CF=BC-BF=5x-3x=2x,
          ∵tan∠EFC=
          3
          4
          ,
          ∴CE=CF•tan∠EFC=2x•
          3
          4
          =
          3
          2
          x,
          ∴DE=CD-CE=4x-
          3
          2
          x=
          5
          2
          x,
          在Rt△ADE中,AD2+DE2=AE2,
          即(5x)2+(
          5
          2
          x)2=(10
          5
          2,
          整理得,x2=16,
          解得x=4,
          ∴AB=4×4=16cm,AD=5×4=20cm,
          矩形的周長(zhǎng)=2(16+20)=72cm.
          故選A.
          點(diǎn)評(píng):本題考查了矩形的對(duì)邊相等,四個(gè)角都是直角的性質(zhì),銳角三角函數(shù),勾股定理的應(yīng)用,根據(jù)正切值設(shè)出未知數(shù)并表示出圖形中的各線段是解題的關(guān)鍵,也是本題的難點(diǎn).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•瀘州)如圖所示為某幾何體的示意圖,則該幾何體的主視圖應(yīng)為(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•瀘州)如圖,在等腰直角△ACB中,∠ACB=90°,O是斜邊AB的中點(diǎn),點(diǎn)D、E分別在直角邊AC、BC上,且∠DOE=90°,DE交OC于點(diǎn)P.則下列結(jié)論:
          (1)圖形中全等的三角形只有兩對(duì);
          (2)△ABC的面積等于四邊形CDOE的面積的2倍;
          (3)CD+CE=
          2
          OA;(4)AD2+BE2=2OP•OC.
          其中正確的結(jié)論有(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•瀘州)如圖,已知函數(shù)y=
          4
          3
          x與反比例函數(shù)y=
          k
          x
          (x>0)的圖象交于點(diǎn)A.將y=
          4
          3
          x的圖象向下平移6個(gè)單位后與雙曲線y=
          k
          x
          交于點(diǎn)B,與x軸交于點(diǎn)C.
          (1)求點(diǎn)C的坐標(biāo);
          (2)若
          OA
          CB
          =2,求反比例函數(shù)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•瀘州)如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
          (1)求證:CD2=CA•CB;
          (2)求證:CD是⊙O的切線;
          (3)過(guò)點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,若BC=12,tan∠CDA=
          23
          ,求BE的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案