日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,P為正方形ABCD內(nèi)一點,且PA:PB:PC=1:2:3,求∠APB的度數(shù).
          小娜同學(xué)的想法是:不妨設(shè)PA=1,PB=2,PC=3,設(shè)法把PA、PB、PC相對集中,于是他將△BCP繞點B順時針旋轉(zhuǎn)90°得到△BAE(如圖2),然后連接PE,問題得以解決.
          請你回答:圖2中∠APB的度數(shù)為______.
          請你參考小娜同學(xué)的思路,解決下列問題:
          如圖3,P是等邊三角形ABC內(nèi)一點,已知∠APB=115°,∠BPC=125°.
          (1)在圖3中畫出并指明以PA、PB、PC的長度為三邊長的一個三角形(保留畫圖痕跡);
          (2)求出以PA、PB、PC的長度為三邊長的三角形的各內(nèi)角的度數(shù)分別等于______.

          解:如圖2.
          ∵根據(jù)旋轉(zhuǎn)的性質(zhì)知∠PBE=90°,△BCP≌△BAE.
          ∴BP=BE,PC=AE,
          ∴∠BPE=∠BEP=45°.
          又PA:PB:PC=1:2:3,
          ∴AE2=AP2+PE2,
          ∴∠APE=90°,
          ∴∠APB=∠APE+∠BPE=90°+45°=135°,即圖2中∠APB的度數(shù)為135°.
          故答案是:135°;

          (1)如圖3,將△BCP繞點C順時針旋轉(zhuǎn)60°得到△ACM,然后連接PM,△APM即為所求,即以PA、PB、PC的長度為三邊長的一個三角形是△APM.以PA、PB、PC的長度為三邊長的一個三角形是△APM.

          (2)如圖3.
          ∵根據(jù)旋轉(zhuǎn)的性質(zhì)知∠PCM=60°,△BCP≌△ACM.
          ∴PC=CM,∠AMC=∠BPC=125°,
          ∴△PCM是等邊三角形,
          ∴∠MPC=∠PMC=60°,∠AMP=∠AMC-∠PMC=65°.
          ∵∠APB=115°,∠BPC=125°,∠APB+∠BPC+∠MPC+∠APM=360°,
          ∴∠APM=60°,
          ∴∠PAM=180°-∠APM-∠AMP=55°.
          ∴以PA、PB、PC的長度為三邊長的三角形的各內(nèi)角的度數(shù)分別等于  60°、65°、55°.
          故答案是:60°、65°、55°.
          分析:圖2中,根據(jù)旋轉(zhuǎn)的性質(zhì)知△BCP≌△BAE.由全等三角形的對應(yīng)邊相等、等腰三角形的判定推知△BPE是等腰三角形,則∠BPE=∠BEP=45°;然后由全等三角形的對應(yīng)邊相等、勾股定理證得∠APE=90°;最后根據(jù)圖中角與角間的數(shù)量關(guān)系求得∠APB=135°;
          (1)設(shè)法把PA、PB、PC相對集中,將△BCP繞點B順時針旋轉(zhuǎn)60°得到△ACM,然后連接PM,問題得以解決.
          (2)根據(jù)旋轉(zhuǎn)的性質(zhì)知∠PCM=60°,△BCP≌△ACM.然后根據(jù)全等三角形的對應(yīng)邊、對應(yīng)角相等,周角的定義以及三角形內(nèi)角和定理來求以PA、PB、PC的長度為三邊長的三角形的各內(nèi)角的度數(shù).
          點評:本題綜合考查了旋轉(zhuǎn)的性質(zhì),等邊三角形和正方形的性質(zhì)以及全等三角形的判定與性質(zhì)等知識點.旋轉(zhuǎn)變化前后,對應(yīng)角、對應(yīng)線段分別相等,圖形的大小、形狀都不變.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,四邊形OBCA為正方形,圖1是以AB為直徑畫半圓,陰影部分面積記為S1,圖2是以O(shè)為圓心,OA長為半徑畫弧,陰影部分面積記為S2,則S1,S2的大小關(guān)系為( 。
          A、S1<S2B、S1=S2C、S1>S2D、無法判斷

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          (2012•鹽城二模)閱讀下列材料:
          問題:如圖1,P為正方形ABCD內(nèi)一點,且PA:PB:PC=1:2:3,求∠APB的度數(shù).
          小娜同學(xué)的想法是:不妨設(shè)PA=1,PB=2,PC=3,設(shè)法把PA、PB、PC相對集中,于是他將△BCP繞點B順時針旋轉(zhuǎn)90°得到△BAE(如圖2),然后連接PE,問題得以解決.
          請你回答:圖2中∠APB的度數(shù)為
          135°
          135°

          請你參考小娜同學(xué)的思路,解決下列問題:
          如圖3,P是等邊三角形ABC內(nèi)一點,已知∠APB=115°,∠BPC=125°.
          (1)在圖3中畫出并指明以PA、PB、PC的長度為三邊長的一個三角形(保留畫圖痕跡);
          (2)求出以PA、PB、PC的長度為三邊長的三角形的各內(nèi)角的度數(shù)分別等于
          60°、65°、55°
          60°、65°、55°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•泰安)如圖,四邊形ABCD為正方形.點A的坐標(biāo)為(0,2),點B的坐標(biāo)為(0,-3),反比例函數(shù)y=
          kx
          的圖象經(jīng)過點C,一次函數(shù)y=ax+b的圖象經(jīng)過點C,一次函數(shù)y=ax+b的圖象經(jīng)過點A,
          (1)求反比例函數(shù)與一次函數(shù)的解析式;
          (2)求點P是反比例函數(shù)圖象上的一點,△OAP的面積恰好等于正方形ABCD的面積,求P點的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (1)正方形ABCD與等腰直角三角形PAQ如圖1所示重疊在一起,其中∠PAQ=90°,點Q在BC上,連接PD,△ADP與△ABQ全等嗎?請說明理由.
          (2)如圖2,O為正方形ABCD對角線的交點,將一直角三角板FPQ的直角頂點F與點O重合轉(zhuǎn)動三角板使兩直角邊始終與BC、AB相交于點M、N,使探索OM與ON的數(shù)量關(guān)系,并說明理由.
          (3)如圖3,將(2)中的“正方形”改成“長方形”,其它的條件不變,且AB=4,AD=6,F(xiàn)M=x,F(xiàn)N=y,試求y與x之間的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,四邊形ABCD為正方形,DE∥AC,且CE=CA,直線EC交DA延長線于F.
          求證:AE=AF.(初二)

          查看答案和解析>>

          同步練習(xí)冊答案