日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在等腰直角三角形ABC中,∠BAC=90°,AC=8 cm,AD⊥BC于點(diǎn)D.點(diǎn)P從點(diǎn)A出發(fā),沿A→C方向以 cm/s的速度運(yùn)動(dòng)到點(diǎn)C停止.在運(yùn)動(dòng)過程中,過點(diǎn)P作PQ∥AB交BC于點(diǎn)Q,以線段PQ為邊作等腰直角三角形PQM,且∠PQM=90°(點(diǎn)M,C位于PQ異側(cè)).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s),△PQM與△ADC重疊部分的面積為y(cm2

          (1)當(dāng)點(diǎn)M落在AB上時(shí),求x的值;
          (2)當(dāng)點(diǎn)M落在AD上時(shí),PM與CD之間的數(shù)量關(guān)系是 , 此時(shí)x的值是;
          (3)求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.

          【答案】
          (1)

          解:當(dāng)點(diǎn)M落在AB上時(shí),四邊形AMQP是正方形,此時(shí)點(diǎn)D與點(diǎn)Q重合,

          ∴AP=CP=4 ,所以x= =4.

          故答案為4.


          (2)PM= CD;
          (3)

          解:①當(dāng)0<x≤4時(shí),如圖2中,設(shè)PM、PQ分別交AD于點(diǎn)E、F,則重疊部分為△PEF,

          ∵AP= x,

          ∴EF=PE=x,

          ∴y=SPEF= PEEF= x2

          ②當(dāng)4<x≤ 時(shí),如圖3中,設(shè)PM、MQ分別交AD于E、G,則重疊部分為四邊形PEGQ.

          ∵PQ=PC=8 x,

          ∴PM=16﹣2x,∴ME=PM﹣PE=16﹣3x,

          ∴y=SPMQ﹣SMEG= (8 x)2 (16﹣3x)2=﹣ x2+32x﹣64.

          ③當(dāng) <x<8時(shí),如圖4中,則重合部分為△PMQ,

          ∴y=SPMQ= PQ2= (8 x)2=x2﹣16x+64.

          綜上所述y=


          【解析(1)當(dāng)點(diǎn)M落在AB上時(shí),四邊形AMQP是正方形,此時(shí)點(diǎn)D與點(diǎn)Q重合,由此即可解決問題.(2)如圖1中,當(dāng)點(diǎn)M落在AD上時(shí),作PE⊥QC于E,先證明DQ=QE=EC,由PE∥AD,得 ,由此即可解決問題.(3)分三種情形①當(dāng)0<x≤4時(shí),如圖2中,設(shè)PM、PQ分別交AD于點(diǎn)E、F,則重疊部分為△PEF,②當(dāng)4<x≤ 時(shí),如圖3中,設(shè)PM、MQ分別交AD于E、G,則重疊部分為四邊形PEGQ.③當(dāng) <x<8時(shí),如圖4中,則重合部分為△PMQ,分別計(jì)算即可解決問題.
          【考點(diǎn)精析】本題主要考查了相似三角形的應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD的對(duì)角線相交于點(diǎn)O,點(diǎn)M,N分別是邊BC,CD上的動(dòng)點(diǎn)(不與點(diǎn)B,C,D重合),AM,AN分別交BD于點(diǎn)E,F(xiàn),且∠MAN始終保持45°不變.

          (1)求證: =
          (2)求證:AF⊥FM;
          (3)請(qǐng)?zhí)剿鳎涸凇螹AN的旋轉(zhuǎn)過程中,當(dāng)∠BAM等于多少度時(shí),∠FMN=∠BAM?寫出你的探索結(jié)論,并加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線y=kx+6分別與x軸、y軸交于點(diǎn)E,F(xiàn),已知點(diǎn)E的坐標(biāo)為(﹣8,0),點(diǎn)A的坐標(biāo)為(﹣6,0).

          (1)求k的值;

          (2)若點(diǎn)P(x,y)是該直線上的一個(gè)動(dòng)點(diǎn),且在第二象限內(nèi)運(yùn)動(dòng),試寫出OPA的面積S關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.

          (3)探究:當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),OPA的面積為,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將矩形紙片ABCD(圖1)按如下步驟操作:(1)以過點(diǎn)A的直線為折痕

          折疊紙片,使點(diǎn)B恰好落在AD邊上,折痕與BC邊交于點(diǎn)E(如圖2);(2)以過點(diǎn)E

          直線為折痕折疊紙片,使點(diǎn)A落在BC邊上,折痕EFAD邊于點(diǎn)F(如圖3);(3)將紙

          片收展平,那么∠AFE的度數(shù)為 ( )

          A. 60° B. 67.5° C. 72° D. 75°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD是菱形,點(diǎn)G是BC延長線上一點(diǎn),連結(jié)AG,分別交BD、CD于點(diǎn)E、F,連結(jié)CE.

          (1)求證:∠DAE=∠DCE;
          (2)當(dāng)CE=2EF時(shí),EG與EF的等量關(guān)系是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,∠ECF=90°,線段 AB 的端點(diǎn)分別在 CE CF ,BD 平分CBA,并與CAB 的外角平分線 AG 所在的直線交于一點(diǎn) D

          (1)∠D C 有怎樣的數(shù)量關(guān)系?(直接寫出關(guān)系及大。

          (2)點(diǎn) A 在射線 CE 上運(yùn)動(dòng),(不與點(diǎn) C 重合)時(shí)其它條件不變,(1)中結(jié)論還成立嗎?說說你的理由

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】列一元一次方程解應(yīng)用題:

          社會(huì)是一個(gè)重要的學(xué)校和課堂,生活是一種重要的課程和教材,實(shí)踐是一種重要的學(xué)習(xí)方式和途徑.參加社會(huì)生活和社會(huì)實(shí)踐,不僅可以學(xué)到很多在課堂上學(xué)不到的東西,也可以把課堂上學(xué)到的理論知識(shí)同社會(huì)實(shí)踐聯(lián)系起來,加深對(duì)課堂學(xué)習(xí)內(nèi)容的理解,我區(qū)某校七年級(jí)學(xué)生在農(nóng)場(chǎng)進(jìn)行社會(huì)實(shí)踐活動(dòng)時(shí),采摘了黃瓜和茄子共80千克,了解到這些蔬菜的種植成本共180元,還了解到如下信息:

          (1)求采摘的黃瓜和茄子各多少千克?

          (2)這些采摘的黃瓜和茄子可賺多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知BDABC的角平分線請(qǐng)按如下要求操作與解答:

          1)過點(diǎn)DDEBCAB于點(diǎn)E.若A=68°,AED=42°,求BCD各內(nèi)角的度數(shù);

          2)畫ABC的角平分線CFBD于點(diǎn)M,若A=60°,請(qǐng)找出圖中所有與A相等的角,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1所示,在ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為直角邊,A為直角頂點(diǎn),在AD左側(cè)作等腰直角三角形ADF,連接CF,AB=AC,BAC=90°.

          (1)當(dāng)點(diǎn)D在線段BC上時(shí)(不與點(diǎn)B重合),線段CFBD的數(shù)量關(guān)系與位置關(guān)系分別是什么?請(qǐng)給予證明.

          (2)當(dāng)點(diǎn)D在線段BC的延長線上時(shí),(1)的結(jié)論是否仍然成立?請(qǐng)?jiān)趫D2中畫出相應(yīng)的圖形,并說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案