日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)是關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根,且,則(    )

          A.            B.                C.                  D.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=-
          b
          a
          x1x2=
          c
          a
          .我們把它們稱為根與系數(shù)關(guān)系定理.
          如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:
          AB=|x1-x2|=
          (x1+x2)2-4x1x2
          =
          (-
          b
          a
          )
          2
          -
          4c
          a
          =
          b2-4ac
          a2
          =
          b2-4ac
          |a|

          請(qǐng)你參考以上定理和結(jié)論,解答下列問(wèn)題:
          設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0),拋物線的頂點(diǎn)為C,顯然△ABC為等腰三角形.
          (1)當(dāng)△ABC為等腰直角三角形時(shí),求b2-4ac的值;
          (2)當(dāng)△ABC為等邊三角形時(shí),b2-4ac=
           

          (3)設(shè)拋物線y=x2+kx+1與x軸的兩個(gè)交點(diǎn)為A、B,頂點(diǎn)為C,且∠ACB=90°,試問(wèn)如何平移此拋物線,才能使∠ACB=60°?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知關(guān)于x的二次函數(shù)y=x2+(2k-1)x+k2-1.
          (1)若關(guān)于x的一元二次方程x2+(2k-1)x+k2-1=0的兩根的平方和等于9,求k的值,并在直角坐標(biāo)系(如圖)中畫(huà)出函數(shù)y=x2+(2k-1)x+k2-1的大致圖象;
          (2)在(1)的條件下,設(shè)這個(gè)二次函數(shù)的圖象與x軸從左至右交于A、B兩點(diǎn).問(wèn)函數(shù)對(duì)稱軸右邊的圖象上,是否存在點(diǎn)M,使銳角△AMB的面積等于3.若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
          (3)在(1)、(2)條件下,若P點(diǎn)是二次函圖象上的點(diǎn),且∠PAM=90°,求△APM的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•蘭州)若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2=-
          b
          a
          ,x1•x2=
          c
          a
          .把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B兩個(gè)交點(diǎn)間的距離為:AB=|x1-x2|=
          (x1+x2)2-4x1x2
          =
          (-
          b
          a
          )
          2
          -
          4c
          a
          =
          b2-4ac
          a2
          =
          b2-4ac
          |a|
          ;
          參考以上定理和結(jié)論,解答下列問(wèn)題:
          設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個(gè)交點(diǎn)A(x1,0),B(x2,0),拋物線的頂點(diǎn)為C,顯然△ABC為等腰三角形.
          (1)當(dāng)△ABC為直角三角形時(shí),求b2-4ac的值;
          (2)當(dāng)△ABC為等邊三角形時(shí),求b2-4ac的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:課堂三級(jí)講練數(shù)學(xué)九年級(jí)(上) 題型:044

          若關(guān)于x的一元二 次方程x2+(m+1)x+m+4=0的兩實(shí)根的平方和為2,求m的值.

          解:設(shè)方程的兩根x1,x2,那么x1+x2=(m+1),x1·x2=m+4,

          =(x1+x2)2-2x1x2=(m+1)2-2(m+4)=2.

          即m2=9,解得m=3.

          答:m的值是3.

          請(qǐng)把上達(dá)解答過(guò)程的鉆誤或不完整之處,寫(xiě)在橫線上,并給出正確解答.

          答:錯(cuò)誤或不完整之處有:________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:中考必備’04全國(guó)中考試題集錦·數(shù)學(xué) 題型:044

          已知關(guān)于x的一元二次為程ax2+x-a=0(a≠0).

          (1)求證:對(duì)于任意非零實(shí)數(shù)a,該方程恒有兩個(gè)異號(hào)的實(shí)數(shù)根;

          (2)設(shè)x1、x2是該方程的兩個(gè)根,若|x1|+|x2|=4,求a的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案