日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在正方形 ABCD 中,M BC 邊上一點,且點 M 不與 B、C 重合,點 P 在射線 AM 上,將線段 AP 繞點 A 順時針旋轉(zhuǎn) 90°得到線段 AQ,連接BP,DQ.

          (1)依題意補全圖 1;

          (2)①連接 DP,若點 P,Q,D 恰好在同一條直線上,求證:DP2+DQ2=2AB2;

          若點 P,Q,C 恰好在同一條直線上,則 BP AB 的數(shù)量關(guān)系為:

          【答案】(1)詳見解析;(2)①詳見解析;②BP=AB.

          【解析】

          (1)根據(jù)要求畫出圖形即可;

          (2)①連接BD,如圖2,只要證明ADQ≌△ABP,DPB=90°即可解決問題;

          ②結(jié)論:BP=AB,如圖3中,連接AC,延長CDN,使得DN=CD,連接AN,QN.由ADQ≌△ABP,ANQ≌△ACP,推出DQ=PB,AQN=APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;

          (1)解:補全圖形如圖 1:

          (2)①證明:連接 BD,如圖 2,

          ∵線段 AP 繞點 A 順時針旋轉(zhuǎn) 90°得到線段 AQ,

          AQ=AP,QAP=90°,

          ∵四邊形 ABCD 是正方形,

          AD=AB,DAB=90°,

          ∴∠1=2.

          ∴△ADQ≌△ABP,

          DQ=BP,Q=3,

          ∵在 RtQAP 中,∠Q+QPA=90°,

          ∴∠BPD=3+QPA=90°,

          ∵在 RtBPD 中,DP2+BP2=BD2, 又∵DQ=BP,BD2=2AB2

          DP2+DQ2=2AB2

          ②解:結(jié)論:BP=AB.

          理由:如圖 3 中,連接 AC,延長 CD N,使得 DN=CD,連接 AN,QN.

          ∵△ADQ≌△ABP,ANQ≌△ACP,

          DQ=PB,AQN=APC=45°,

          ∵∠AQP=45°,

          ∴∠NQC=90°,

          CD=DN,

          DQ=CD=DN=AB,

          PB=AB.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解下列方程:

          12xx+1)=2x+2

          2x24x40

          3x2x70

          4)(x125x1)﹣60

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABO的直徑,BCO的切線,DO上的一點,CDCB,延長CDBA的延長線于點E

          1)求證:CDO的切線;

          2)若OFBD于點F,且OF2,BD4,求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)

          1)若△CEF△ABC相似.

          當(dāng)AC=BC=2時,AD的長為   

          當(dāng)AC=3,BC=4時,AD的長為   ;

          2)當(dāng)點DAB的中點時,△CEF△ABC相似嗎?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義:對于拋物線yax2+bx+ca、b、c是常數(shù),a≠0),若b2ac,則稱該拋物線為黃金拋物線.例如:yx2x+1是黃金拋物線

          1)請再寫出一個與上例不同的黃金拋物線的解析式;

          2)將黃金拋物線yx2x+1沿對稱軸向下平移3個單位

          ①直接寫出平移后的新拋物線的解析式;

          ②新拋物線如圖所示,與x軸交于A、BAB的左側(cè)),與y軸交于C,點P是直線BC下方的拋物線上一動點,連結(jié)PO、PC,并把△POC沿CO翻折,得到四邊形POPC,那么是否存在點P,使四邊形POPC為菱形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.

          ③當(dāng)直線BC下方的拋物線上動點P運動到什么位置時,四邊形 OBPC的面積最大并求出此時P點的坐標(biāo)和四邊形OBPC的最大面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,菱形ABCD的頂點Bx軸的正半軸上,點A坐標(biāo)為(-4,0),點D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點C,則k的值為______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】, ,,,是斜邊的中點,以點為頂點作,射線、分別交邊、于點、.

          特例

          1)如圖1,若,不添加輔助線,圖1中所有與相似的三角形為 , ;

          操作探究:

          2)將(1)中的從圖1的位置開始繞點按逆時針方向旋轉(zhuǎn),得到,如圖2,當(dāng)射線,分別交邊、于點時,求的值;

          拓展延伸:

          3)如圖3,中,,,,點是斜邊的中點,以點為頂點作,射線、分別交邊、的延長線于點,則的值為 .(用含、的代數(shù)式表示,直接回答即可)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線的對稱軸是直線x=1,與x軸有兩個交點,與y軸交點的坐標(biāo)為(0,3),把它向下平移2個單位后,得到新的拋物線的解析式是y=ax2bxc,以下四個結(jié)論:①b24ac<0;②abc<0;③4a2bc=1;④abc>0,其中正確的是

          A.①②③B.②③④C.①③④D.①②③④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在菱形ABCD中,∠BADα,E為對角線AC上的一點(不與A,C重合)將射線EB繞點E順時針旋轉(zhuǎn)β角之后,所得射線與直線AD交于F點.試探究線段EBEF的數(shù)量關(guān)系.

          1)如圖1,當(dāng)αβ90°時,EBEF的數(shù)量關(guān)系為   

          2)如圖2,當(dāng)α60°,β120°時,

          ①依題意補全圖形;

          ②探究(1)的結(jié)論是否成立,若成立,請給出證明;若不成立,請舉出反例證明.

          查看答案和解析>>

          同步練習(xí)冊答案