日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】操作思考:如圖1,在平面直角坐標(biāo)系中,等腰的直角頂點(diǎn)C在原點(diǎn),將其繞著點(diǎn)O旋轉(zhuǎn),若頂點(diǎn)A恰好落在點(diǎn)的長為______;點(diǎn)B的坐標(biāo)為______直接寫結(jié)果

          感悟應(yīng)用:如圖2,在平面直角坐標(biāo)系中,將等腰如圖放置,直角頂點(diǎn),點(diǎn),試求直線AB的函數(shù)表達(dá)式.

          拓展研究:如圖3,在直角坐標(biāo)系中,點(diǎn),過點(diǎn)B軸,垂足為點(diǎn)A,作軸,垂足為點(diǎn)C,P是線段BC上的一個動點(diǎn),點(diǎn)Q是直線上一動點(diǎn)問是否存在以點(diǎn)P為直角頂點(diǎn)的等腰,若存在,請求出此時P的坐標(biāo),若不存在,請說明理由.

          【答案】(1),23,

          【解析】

          可得,,,,易證,,因此;

          可證,,,求得最后代入求出一次函數(shù)解析式即可;

          分兩種情況討論當(dāng)點(diǎn)Qx軸下方時,當(dāng)點(diǎn)Qx軸上方時根據(jù)等腰構(gòu)建一線三直角,從而求解.

          如圖1,作軸,軸.

          ,

          ,,

          ,

          ,,

          故答案為,;

          如圖2,過點(diǎn)B軸.

          ,

          ,

          設(shè)直線AB的表達(dá)式為

          代入,得

          解得,

          直線AB的函數(shù)表達(dá)式

          如圖3,設(shè),分兩種情況:

          當(dāng)點(diǎn)Qx軸下方時,軸,與BP的延長線交于點(diǎn)

          ,

          ,

          ,

          ,

          解得

          此時點(diǎn)P與點(diǎn)C重合,

          ;

          當(dāng)點(diǎn)Qx軸上方時,軸,與PB的延長線交于點(diǎn)

          同理可證

          同理求得

          綜上,P的坐標(biāo)為:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點(diǎn),連接EF,點(diǎn)P從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動,速度為1cm/s,同時,點(diǎn)Q從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動,速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動時,點(diǎn)Q也停止運(yùn)動.連接PQ,設(shè)運(yùn)動時間為t(0<t<4)s,解答下列問題:

          (1)求證:△BEF∽△DCB;

          (2)當(dāng)點(diǎn)Q在線段DF上運(yùn)動時,若△PQF的面積為0.6cm2,求t的值;

          (3)如圖2過點(diǎn)QQG⊥AB,垂足為G,當(dāng)t為何值時,四邊形EPQG為矩形,請說明理由;

          (4)當(dāng)t為何值時,△PQF為等腰三角形?試說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明、小兵、小英三人的家和學(xué)校在同一條東西走向的大街上,星期天班主任到這三位學(xué)生家進(jìn)行家訪,班主任從學(xué)校出發(fā)先向東走0.5千米到小明家,后又向東走1.5千米到小兵家,再向西走5千米到小英家,最后回到學(xué)校。

          1)以學(xué)校為原點(diǎn),畫出數(shù)軸并在數(shù)軸上分別表示出小明、小兵、小英三人家的位置。

          2)小明家距離小英家多遠(yuǎn)?

          3)這次家訪,班主任共走了多少千米路程?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,∠AOB=90°,∠BOC=30°,C在∠AOB外部,OM平分∠AOC,ON平分∠BOC. 則∠MON= .

          1)若∠AOB=α,其他條件不變,則∠MON= .

          2)若∠BOC=ββ為銳角),其他條件不變,則∠MON= .

          3)若∠AOB=α且∠BOC=ββ為銳角),求∠MON的度數(shù)(請在圖2中畫出示意圖并解答)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線m的表達(dá)式為y =3x+3,且與x軸交于點(diǎn)B,直線n經(jīng)過點(diǎn)A4,0),且與直線m交于點(diǎn)Ct,﹣3

          1)求直線n的表達(dá)式.

          2)求ABC的面積.

          3)在直線n上存在異于點(diǎn)C的另一點(diǎn)P,使ABPABC的面積相等,請直接寫出點(diǎn)P的坐標(biāo)是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明上周零花錢使用情況:(規(guī)定:超過50元記為正,少于50元記為負(fù))

          星期一

          星期二

          星期三

          星期四

          星期五

          +11

          +10

          17

          +18

          12

          請你解答以下問題:

          1)上星期五小明用了多少零花錢;

          2)上星期四比上星期三多花了多少零花錢;

          3)求上周平均每天用多少錢?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD的邊長是,連接交于點(diǎn)O,并分別與邊交于點(diǎn),連接AE,下列結(jié)論:;;當(dāng)時,,其中正確結(jié)論的個數(shù)是

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了了解全校2400名學(xué)生的閱讀興趣,從中隨機(jī)抽查了部分同學(xué),就“我最感興趣的書籍”進(jìn)行了調(diào)查:A.小說、B.散文、C.科普、D.其他(每個同學(xué)只能選擇一項(xiàng)),進(jìn)行了相關(guān)統(tǒng)計,整理并繪制出兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題

          (1)本次抽查中,樣本容量為______;

          (2)a______,b______

          (3)扇形統(tǒng)計圖中,其他類書籍所在扇形的圓心角是______°;

          (4)請根據(jù)樣本數(shù)據(jù),估計全校有多少名學(xué)生對散文感興趣

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

          (1)求證:ED為⊙O的切線;

          (2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

          【答案】(1)證明見解析;(2)

          【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
          (2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

          試題解析:(1)證明:連接OD

          OEAB,

          ∴∠COE=CAD,EOD=ODA

          OA=OD,

          ∴∠OAD=ODA,

          ∴∠COE=DOE

          在△COE和△DOE中,

          ∴△COE≌△DOE(SAS),

          EDOD,

          ED的切線;

          (2)連接CD,交OEM,

          RtODE中,

          OD=32,DE=2,

          OEAB,

          ∴△COE∽△CAB,

          AB=5,

          AC是直徑,

          EFAB,

          SADF=S梯形ABEFS梯形DBEF

          ∴△ADF的面積為

          型】解答
          結(jié)束】
          25

          【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點(diǎn)M(1,0),且a<b.

          (1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

          (2)直線與拋物線的另外一個交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

          (3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點(diǎn),試求t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案