日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,如圖,直線MN⊙OA,B兩點,AC是直徑,AD平分∠CAM⊙OD,過DDE⊥MNE

          1)求證:DE⊙O的切線;

          2)若DE=6cmAE=3cm,求⊙O的半徑.

          【答案】解:(1)證明:連接OD

          ∵OA=OD,∴∠OAD=∠ODA。

          ∵∠OAD=∠DAE∴∠ODA=∠DAE。∴DO∥MN。

          ∵DE⊥MN,∴∠ODE=∠DEM =90°,即OD⊥DE。

          ∵D⊙O上,∴DE⊙O的切線。

          2)連接CD

          ∵∠AED=90°,DE=6AE=3,∴AD=。

          ∵AC⊙O的直徑,∴∠ADC=∠AED =90°。

          ∵∠CAD=∠DAE,∴△ACD∽△ADE,即。

          解得:AC=15。

          ∴⊙O的半徑是7.5cm。

          【解析】試題分析:(1)連接OD,根據(jù)平行線的判斷方法與性質(zhì)可得∠ODE=∠DEM=90°,且D⊙O上,故DE⊙O的切線.

          2)由直角三角形的特殊性質(zhì),可得AD的長,又有△ACD∽△ADE.根據(jù)相似三角形的性質(zhì)列出比例式,代入數(shù)據(jù)即可求得圓的半徑.

          試題解析:(1)證明:連接OD

          ∵OA=OD,

          ∴∠OAD=∠ODA

          ∵∠OAD=∠DAE,

          ∴∠ODA=∠DAE

          ∴DO∥MN

          ∵DE⊥MN,

          ∴∠ODE=∠DEM=90°

          OD⊥DE

          ∵D⊙O上,OD⊙O的半徑,

          ∴DE⊙O的切線.

          2)解:∵∠AED=90°,DE=6AE=3,

          連接CD

          ∵AC⊙O的直徑,

          ∴∠ADC=∠AED=90°

          ∵∠CAD=∠DAE,

          ∴△ACD∽△ADE

          AC=15cm).

          ∴⊙O的半徑是7.5cm

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】通過學(xué)習(xí)同學(xué)們已經(jīng)體會到靈活運用整式乘法公式給計算和化簡帶來的方便、快捷.相信通過下面材料的學(xué)習(xí)、探究,會使你大開眼界,并獲得成功的喜悅.

          例:用簡便方法計算195×205.

          解:195×205

          =(200-5)(200+5)   、

          =2002-52

          =39975.

          (1)例題求解過程中,第②步變形是利用____________(填乘法公式的名稱);

          (2)用簡便方法計算:

          ①9×11×101×10 001;

          ②(2+1)(22+1)(24+1)…(232+1)+1.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,如圖,在△ABC中,∠A=∠ABC,直線EF分別交△ABC的邊AB,ACCB的延長線于點D,E,F

          1)求證:∠F+∠FEC=2∠A;

          2)過B點作BM∥ACFD于點M,試探究∠MBC∠F+∠FEC的數(shù)量關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一個多邊形的邊數(shù)是10,則這個多邊形的內(nèi)角和是______°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】春季流感爆發(fā),某校為了解全體學(xué)生患流感情況,隨機抽取部分班級對患流感人數(shù)的進(jìn)行調(diào)查,發(fā)現(xiàn)被抽查各班級患流感人數(shù)只有1名、2名、3名、4名、5名、6名這六種情況,并制成如下兩幅不完整的統(tǒng)計圖:

          (1)抽查了  個班級,并將該條形統(tǒng)計圖(圖2)補充完整;

          (2)扇形圖(圖1)中患流感人數(shù)為4名所在扇形的圓心角的度數(shù)為  ;

          (3)若該校有45個班級,請估計該校此次患流感的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】頻數(shù)m、頻率p和數(shù)據(jù)總個數(shù)n之間的關(guān)系是( )

          A. n=mp B. p=mn

          C. n=m+p D. m=np

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為響應(yīng)國家節(jié)能減排的號召,鼓勵居民節(jié)約用電,各省先后出臺了居民用電“階梯價格”制度,如下表是某省的電價標(biāo)準(zhǔn)(每月).例如:方女士家5月份用電500度,電費=180×0.6+220×二檔電價+100×三檔電價=352元;李先生家5月份用電460度,交費316元.請問表中二檔電價、三檔電價各是多少?

          階梯

          電量

          電價

          一檔

          0~180度

          0.6元/度

          二檔

          181~400度

          二檔電價

          三檔

          401度及以上

          三檔電價

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC.

          (1)當(dāng)∠B=40°時,求∠ADC的度數(shù);
          (2)若AB=10cm,CD=4cm,求△ABD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D.求證:

          (1)△BEC≌△CDA;
          (2)DE=AD﹣BE.

          查看答案和解析>>

          同步練習(xí)冊答案