日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1 , y1),點(diǎn)Q的坐標(biāo)為(x2 , y2),且x1≠x2 , y1≠y2 , 若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,如圖為點(diǎn)P,Q的“相關(guān)矩形”示意圖.
          (1)已知點(diǎn)A的坐標(biāo)為(1,0), ①若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
          ②點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
          (2)⊙O的半徑為 ,點(diǎn)M的坐標(biāo)為(m,3),若在⊙O上存在一點(diǎn)N,使得點(diǎn)M,N的“相關(guān)矩形”為正方形,求m的取值范圍.

          【答案】
          (1)解:①∵A(1,0),B(3,1)

          由定義可知:點(diǎn)A,B的“相關(guān)矩形”的底與高分別為2和1,

          ∴點(diǎn)A,B的“相關(guān)矩形”的面積為2×1=2;

          ②由定義可知:AC是點(diǎn)A,C的“相關(guān)矩形”的對(duì)角線,

          又∵點(diǎn)A,C的“相關(guān)矩形”為正方形

          ∴直線AC與x軸的夾角為45°,

          設(shè)直線AC的解析為:y=x+m或y=﹣x+n

          把(1,0)分別y=x+m,

          ∴m=﹣1,

          ∴直線AC的解析為:y=x﹣1,

          把(1,0)代入y=﹣x+n,

          ∴n=1,

          ∴y=﹣x+1,

          綜上所述,若點(diǎn)A,C的“相關(guān)矩形”為正方形,直線AC的表達(dá)式為y=x﹣1或y=﹣x+1;


          (2)解:設(shè)直線MN的解析式為y=kx+b,

          ∵點(diǎn)M,N的“相關(guān)矩形”為正方形,

          ∴由定義可知:直線MN與x軸的夾角為45°,

          ∴k=±1,

          ∵點(diǎn)N在⊙O上,

          ∴當(dāng)直線MN與⊙O有交點(diǎn)時(shí),點(diǎn)M,N的“相關(guān)矩形”為正方形,

          當(dāng)k=1時(shí),

          作⊙O的切線AD和BC,且與直線MN平行,

          其中A、C為⊙O的切點(diǎn),直線AD與y軸交于點(diǎn)D,直線BC與y軸交于點(diǎn)B,

          連接OA,OC,

          把M(m,3)代入y=x+b,

          ∴b=3﹣m,

          ∴直線MN的解析式為:y=x+3﹣m

          ∵∠ADO=45°,∠OAD=90°,

          ∴OD= OA=2,

          ∴D(0,2)

          同理可得:B(0,﹣2),

          ∴令x=0代入y=x+3﹣m,

          ∴y=3﹣m,

          ∴﹣2≤3﹣m≤2,

          ∴1≤m≤5,

          當(dāng)k=﹣1時(shí),把M(m,3)代入y=﹣x+b,

          ∴b=3+m,

          ∴直線MN的解析式為:y=﹣x+3+m,

          同理可得:﹣2≤3+m≤2,

          ∴﹣5≤m≤﹣1;

          綜上所述,當(dāng)點(diǎn)M,N的“相關(guān)矩形”為正方形時(shí),m的取值范圍是:1≤m≤5或﹣5≤m≤﹣1


          【解析】(1)①由相關(guān)矩形的定義可知:要求A與B的相關(guān)矩形面積,則AB必為對(duì)角線,利用A、B兩點(diǎn)的坐標(biāo)即可求出該矩形的底與高的長(zhǎng)度,進(jìn)而可求出該矩形的面積;②由定義可知,AC必為正方形的對(duì)角線,所以AC與x軸的夾角必為45,設(shè)直線AC的解析式為;y=kx+b,由此可知k=±1,再(1,0)代入y=kx+b,即可求出b的值;(2)由定義可知,MN必為相關(guān)矩形的對(duì)角線,若該相關(guān)矩形的為正方形,即直線MN與x軸的夾角為45°,由因?yàn)辄c(diǎn)N在圓O上,所以該直線MN與圓O一定要有交點(diǎn),由此可以求出m的范圍.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我國(guó)中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場(chǎng)根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái).經(jīng)過(guò)市場(chǎng)銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).
          (1)試確定月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
          (2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】計(jì)算下列各題:
          (1)﹣|﹣1|+ cos30°﹣(﹣ 2+(π﹣3.14)0
          (2)(x﹣y)2﹣(x﹣2y)(x+y)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在矩形ABCD中,AB=3,BC=4.動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AC向終點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BA向點(diǎn)A運(yùn)動(dòng),到達(dá)A點(diǎn)后立刻以原來(lái)的速度沿AB返回.點(diǎn)P,Q運(yùn)動(dòng)速度均為每秒1個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),點(diǎn)Q也同時(shí)停止.連結(jié)PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.

          (1)在點(diǎn)Q從B到A的運(yùn)動(dòng)過(guò)程中,
          ①當(dāng)t=時(shí),PQ⊥AC;
          (2)②求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
          (3)伴隨著P、Q兩點(diǎn)的運(yùn)動(dòng),線段PQ的垂直平分線為l.
          ①當(dāng)l經(jīng)過(guò)點(diǎn)A時(shí),射線QP交AD于點(diǎn)E,求AE的長(zhǎng);
          ②當(dāng)l經(jīng)過(guò)點(diǎn)B時(shí),求t的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】學(xué)校為了解學(xué)生參加體育活動(dòng)的情況,對(duì)學(xué)生“平均每天參加體育活動(dòng)的時(shí)間”進(jìn)行了隨機(jī)抽樣調(diào)查,下圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.
          請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答以下問(wèn)題:
          (1)“平均每天參加體育活動(dòng)的時(shí)間”“為0.5~1小時(shí)”部分的扇形統(tǒng)計(jì)圖的圓心角為度;
          (2)本次一共調(diào)查了名學(xué)生;
          (3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
          (4)若該校有2000名學(xué)生,你估計(jì)全?赡苡卸嗌倜麑W(xué)生平均每天參加體育活動(dòng)的時(shí)間在0.5小時(shí)以下.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,一個(gè)瓶子的容積為1 L,瓶?jī)?nèi)裝著溶液,當(dāng)瓶子正放時(shí),瓶?jī)?nèi)溶液的高度為20 cm,當(dāng)瓶子倒放時(shí),空余部分的高度為5 cm.現(xiàn)把瓶?jī)?nèi)的溶液全部倒在一個(gè)圓柱形的杯子里,杯內(nèi)的溶液高度為10 cm.

          求:(1)瓶?jī)?nèi)溶液的體積;

          (2)圓柱形杯子的內(nèi)底面半徑(π取3.14,結(jié)果精確到0.1 cm).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖:一輛汽車在一個(gè)十字路口遇到紅燈剎車停下,汽車?yán)锏鸟{駛員看地面的斑馬線前后兩端的視角分別是∠DCA=30°和∠DCB=60°,如果斑馬線的寬度是AB=3米,駕駛員與車頭的距離是0.8米,這時(shí)汽車車頭與斑馬線的距離x是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線AC下方拋物線上的動(dòng)點(diǎn).

          (1)求拋物線的解析式;
          (2)過(guò)點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
          (3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于( 。

          A.60
          B.80
          C.30
          D.40

          查看答案和解析>>

          同步練習(xí)冊(cè)答案