日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在四邊形ABCD中,∠B=135°,∠C=120°,AB=2
          3
          ,BC=4-2
          2
          ,CD=4
          2
          ,則AD邊的長(zhǎng)為
           
          分析:過點(diǎn)A,D分別作AE,DF垂直于直線BC,垂足分別為E,F(xiàn),根據(jù)∠B=135°,∠C=120°,可構(gòu)成等腰直角三角形,和角是30°的直角三角形,根據(jù)其性質(zhì),可求出線段AG,DG長(zhǎng),根據(jù)勾股定理可求出AD的長(zhǎng).
          解答:精英家教網(wǎng)解:如圖,過點(diǎn)A,D分別作AE,DF垂直于直線BC,垂足分別為E,F(xiàn).
          ∵∠B=135°,
          ∴∠ABE=45°,
          ∴BE=AE=
          6
          ,
          ∵∠C=120°,
          ∴∠DCF=60°,
          ∵CD=4
          2

          ∴CF=2
          2
          ,
          ∴DF=2
          6

          ∴EF=4+
          6

          過點(diǎn)A作AG⊥DF,垂足為G.在Rt△ADG中,根據(jù)勾股定理得
          AD=
          (4+
          6
          )
          2
          +(
          6
          )
          2
          =
          (2+
          24
          )
          2
          =2+2
          6

          故答案為:2+2
          6
          點(diǎn)評(píng):本題考查了勾股定理的應(yīng)用,和等腰直角三角形的性質(zhì)和30°直角三角形的特點(diǎn),從而可求出解.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
          (1)求證:AE=DF;
          (2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
          (3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
          求證:AB∥CD,AD∥BC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
          求證:AB∥CD,AD∥BC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

          已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案