日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線經(jīng)過兩點(diǎn).

          1)求拋物線的解析式;

          2)將拋物線向下平移個單位,使平移后得到的拋物線頂點(diǎn)落在的內(nèi)部(不包括的邊界),求的取值范圍.

          3)若是拋物線上一動點(diǎn),是否存在點(diǎn),使的面積是?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,請說明理由.

          【答案】1;(2;(3)存在,

          【解析】

          1)把點(diǎn)A0,6)、B42)代入yx2bxc,利用待定系數(shù)法即可得出拋物線的解析式;

          2)先利用配方法求出二次函數(shù)的頂點(diǎn)坐標(biāo),利用待定系數(shù)法分別求出直線AB與直線OB的解析式,將頂點(diǎn)橫坐標(biāo)的值分別代入兩直線的解析式,求出對應(yīng)的y的值,進(jìn)而得出m的取值范圍;

          3)設(shè)拋物線上存在點(diǎn)Px,x23x6),使△PAB的面積是10.過Px軸的垂線,交直線ABQ,則Qx,x6).分兩種情況進(jìn)行討論:①點(diǎn)PAB上方;②點(diǎn)PAB下方.根據(jù)△PAB的面積是10列方程求解.

          解:(1)拋物線過,,則有:

          解之得:  

          所求的解析式是:

          2

          頂點(diǎn)的坐標(biāo)為

          設(shè)直線的解析式是,因?yàn)橹本經(jīng)過兩點(diǎn),

          所以有, 解之得:

          直線的解析式為

          設(shè)直線的解析式是,因?yàn)橹本經(jīng)過、兩點(diǎn),

          所以有 ,解之得:

          直線的解析式為

          代入

          代入

          ,

          3)設(shè)拋物線上存在點(diǎn)Px,x23x6),使△PAB的面積是10

          Px軸的垂線,交直線ABQ,

          ∵直線的解析式為,則Qx,x6).

          分兩種情況:①點(diǎn)PAB上方時,

          PQx23x6x6)=x24x,

          ∵△PAB的面積=△PAQ的面積+△PQB的面積

          PQ42PQ10,

          PQ5

          x24x5,

          解得x無實(shí)數(shù)根;

          ②點(diǎn)PAB下方時,

          PQ=(x6x23x6)=x24x

          ∵△PAB的面積=|PAQ的面積PQB的面積|

          PQ42PQ10,

          PQ5,

          x24x5,

          解得x11x25,

          故所求P點(diǎn)坐標(biāo)為(1,2)或(5,4).

          綜上,存在使的面積是

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形邊長為2,分別是、上兩動點(diǎn),且滿足,于點(diǎn)

          (1)如圖1,判斷線段、的位置關(guān)系,并說明理由;

          (2)在(1)的條件下,連接,直接寫出的最小值為 ;

          (3)如圖2,點(diǎn)的中點(diǎn),連接

          ①求證:平分;

          ②求線段的長度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點(diǎn)坐標(biāo)為A(﹣4,1),B(﹣2,3),C(﹣1,2).

          1)畫出ABC關(guān)于原點(diǎn)O成中心對稱的ABC,點(diǎn)A,B,C分別是點(diǎn)A,B,C的對應(yīng)點(diǎn).

          2)求過點(diǎn)B的反比例函數(shù)解析式.

          3)判斷AB的中點(diǎn)P是否在(2)的函數(shù)圖象上.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABCD中,ABDCABAD,對角線AC,BD交于點(diǎn)O,AC平分∠BAD,過點(diǎn)CCEABAB的延長線于點(diǎn)E,連接OE

          1)求證:四邊形ABCD是菱形;

          2)若AB,BD2,求OE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為rr0).給出如下定義:若平面上一點(diǎn)P到圓心O的距離d,滿足,則稱點(diǎn)P為⊙O隨心點(diǎn)

          1)當(dāng)⊙O的半徑r=2時,A3,0),B0,4),C,2),D,)中,⊙O隨心點(diǎn) ;

          2)若點(diǎn)E43)是⊙O隨心點(diǎn),求⊙O的半徑r的取值范圍;

          3)當(dāng)⊙O的半徑r=2時,直線y=- x+bb≠0)與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,若線段MN上存在⊙O隨心點(diǎn),直接寫出b的取值范圍

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明家的門框上裝有一把防盜門鎖(如圖1)其平面結(jié)構(gòu)圖如圖2所示,鎖身可以看成由兩條等弧和矩形組成,的圓心是倒鎖按鈕點(diǎn).其中的弓高.當(dāng)鎖柄繞著點(diǎn)旋轉(zhuǎn)至位置時,門鎖打開,此時直線所在圓相切,且的長度約為____________(結(jié)果精確到,參考數(shù)據(jù):)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,點(diǎn)C在圓O上,BECD垂足為ECB平分∠ABE,連接BC

          1)求證:CD為⊙O的切線;

          2)若cosCAB,CE,求AD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,RtABC中,∠C=90°,∠B的平分線交ACE,DEBE

          1)試說明AC是△BED外接圓的切線;

          2)若CE=1,BC=2,求△ABC內(nèi)切圓的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線的方程C1m>0與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè)

          1若拋物線C1過點(diǎn)M2, 2,求實(shí)數(shù)m的值;

          21的條件下,在拋物線的對稱軸上找一點(diǎn)H,使得BH+EH最小,求出點(diǎn)H的坐標(biāo);

          3在第四象限內(nèi),拋物線C1上是否存在點(diǎn)F,使得以點(diǎn)B、C、F為頂點(diǎn)的三角形與BCE相似?若存在,求m的值;若不存在,請說明理由

          查看答案和解析>>

          同步練習(xí)冊答案