日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知為等邊三角形,上一點(diǎn),為等邊三角形.

          1)求證:;

          2能否互相垂直?若能互相垂直,指出點(diǎn)上的位置,并給予證明;若不能垂直,請(qǐng)說(shuō)明理由.

          【答案】1)見(jiàn)解析;(2AQCQ能互相垂直,此時(shí)點(diǎn)PBC的中點(diǎn)

          【解析】

          1)根據(jù)等邊三角形性質(zhì)得出AB=AC,AP=AQ,∠BAC=B=PAQ=60°,求出∠BAP=CAQ,根據(jù)SAS證△ABP≌△ACQ,推出∠ACQ=B=60°=BAC,根據(jù)平行線的判定推出即可.
          2)根據(jù)等腰三角形性質(zhì)求出∠BAP=30°,求出∠BAQ=90°,根據(jù)平行線性質(zhì)得出∠AQC=90°,即可得出答案.

          1)證明:∵△ABC和△APQ是等邊三角形,
          AB=AC,AP=AQ,∠BAC=B=PAQ=60°,
          ∴∠BAP=CAQ=60°-PAC,
          在△ABP和△ACQ中,

          ,

          ∴△ABP≌△ACQSAS),
          ∴∠ACQ=B=60°=BAC,
          ABCQ;

          2AQCQ能互相垂直,此時(shí)點(diǎn)PBC的中點(diǎn),
          證明:∵當(dāng)PBC邊中點(diǎn)時(shí),∠BAP=BAC=30°
          ∴∠BAQ=BAP+PAQ=30°+60°=90°,
          又∵ABCQ,
          ∴∠AQC=90°
          AQCQ

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】金瑞公司決定從廠家購(gòu)進(jìn)甲、乙兩種不同型號(hào)的顯示器共50臺(tái),購(gòu)進(jìn)顯示器的總金額不超過(guò)77000元,已知甲、乙型號(hào)的顯示器價(jià)格分別為1000元/臺(tái)、2000元/臺(tái)

          1求金瑞公司至少購(gòu)進(jìn)甲型顯示器多少臺(tái)?

          2若甲型顯示器的臺(tái)數(shù)不超過(guò)乙型顯示器的臺(tái)數(shù),則有哪些購(gòu)買方案?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】 如圖,在平行四邊形ABCD中,∠C=60°,M、N分別是ADBC的中點(diǎn),BC=2CD

          1)求證:四邊形MNCD是平行四邊形;

          2)求證:BD=MN

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正方形ABCD的邊長(zhǎng)為8,在各邊上順次截取AE=BF=CG=DH=5,則四邊形EFGH的面積是( 。

          A. 30 B. 34 C. 36 D. 40

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:如圖,AB⊙O的直徑,點(diǎn)C、D⊙O上,且BC=6cm,AC=8cm,∠ABD=45°

          1)求BD的長(zhǎng);

          2)求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】關(guān)于x的一元二次方程(m-1)x2-x-2=0,

          (1)若x=-1是方程的一個(gè)根,求m的值及另一個(gè)根;

          (2)當(dāng)m為何值時(shí)方程有兩個(gè)不同的實(shí)數(shù)根.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC和△ADE中,點(diǎn)P是線段BC上的動(dòng)點(diǎn)(P不與B、C重合),且AD經(jīng)過(guò)P點(diǎn);已知∠B=∠D30°,BCDE,ABAD10,∠PAC的平分線與∠ACB的平分線交于O

          1)∠BAD與∠CAE相等嗎?說(shuō)明其理由;

          2)若AP長(zhǎng)為m,請(qǐng)用含m的代數(shù)式表示線段PD的長(zhǎng),并求PD的最大值;

          3)當(dāng)∠BAC90°時(shí),α°<∠AOCβ°,那么α   ,β   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線y=x2,以D(﹣2,1)為直角頂點(diǎn)作該拋物線的內(nèi)接RtADB(即A.D.B均在拋物線上).直線AB必經(jīng)過(guò)一定點(diǎn),則該定點(diǎn)坐標(biāo)為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在如圖所示的直角坐標(biāo)系中,每個(gè)小方格都是邊長(zhǎng)為1的正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(﹣3,﹣1).

          (1)以O為中心作出△ABC的中心對(duì)稱圖形△A1B1C1,并寫出點(diǎn)B1坐標(biāo);

          (2)以格點(diǎn)P為旋轉(zhuǎn)中心,將△ABC按順時(shí)針?lè)较蛐D(zhuǎn)90°,得到△A′B′C′,且使點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的恰好落在△A1B1C1的內(nèi)部格點(diǎn)上(不含△A1B1C1的邊上),寫出點(diǎn)P的坐標(biāo),并畫出旋轉(zhuǎn)后的△A′B′C′.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案