日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,二次函數(shù)y=ax2+bx-8(a≠0)的圖象與x軸交于點A(-2,0),B(4,0)兩點,與y軸交于點C,T為拋物線的頂點.
          (1)在x軸下方的拋物線上有一點D,以A,C,D,B四點為頂點的四邊形ACDB是等腰梯形,請直接寫出D點的坐標(biāo);
          (2)過點B作兩條互相垂直的直線l1,l2,在拋物線的對稱軸上是否存在點P,使得以點P為圓心的圓過原點,且與直線l1,l2都相切?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;
          (3)直線CT交x軸于點E,點F(m,n)是射線ET上的一個動點,將拋物線沿其對稱軸向下平移2個單位長度,若平移后的拋物線與線段EF只有一個公共點,試分別計算實數(shù)m,n的取值范圍.

          【答案】分析:(1)把點A、B的坐標(biāo)代入二次函數(shù)解析式,利用待定系數(shù)法求出其解析式,然后在求出點C的坐標(biāo),根據(jù)等腰梯形的性質(zhì),點D與點C的縱坐標(biāo)相等,列方程求解即可得到點D的坐標(biāo);
          (2)根據(jù)二次函數(shù)解析式求出對稱軸解析式,然后設(shè)出點P的坐標(biāo)是(1,y),可以判定以兩垂足與點P、B為頂點的四邊形是正方形,利用點P的坐標(biāo)表示出圓的半徑OP以及正方形的對角線PB的長度,再根據(jù)正方形的對角線與邊的關(guān)系進(jìn)行求解即可;
          (3)根據(jù)(1)中二次函數(shù)解析式求出點C、T的坐標(biāo),利用待定系數(shù)法求出直線CT的解析式,再根據(jù)平移寫出平移后的二次函數(shù)解析式,然后兩解析式聯(lián)立求出交點的坐標(biāo),點F位于兩交點之間(包含左邊交點,不包含右邊交點)即可滿足平移后的拋物線與線段EF只有一個公共點,然后根據(jù)交點的坐標(biāo)寫出m、n的取值范圍即可.
          解答:解:(1)根據(jù)題意得,

          解得,
          ∴二次函數(shù)解析式為y=x2-2x-8,
          當(dāng)x=0時,y=-8,
          ∴點C的坐標(biāo)是(0,-8),
          ∵四邊形ACDB是等腰梯形,
          ∴當(dāng)y=-8時,x2-2x-8=-8,
          解得x1=0,x2=2,
          ∴點D的坐標(biāo)是(2,-8);

          (2)存在.
          理由如下:如圖,根據(jù)(1),
          ∵y=x2-2x-8,
          ∴二次函數(shù)圖象對稱軸為x=-=-=1,
          ∵直線l1,l2互相垂直,⊙P與直線l1,l2都相切,
          ∴過兩垂足與點PB的四邊形是正方形,
          設(shè)點P的坐標(biāo)是(1,y),
          則OP==,
          PB==,
          =,即9+y2=2(1+y2),
          可得y2=7,
          解得y=±,
          ∴存在點P(1,)或(1,-);

          (3)∵y=x2-2x-8y=(x-1)2-9,T為拋物線的頂點,
          ∴點T的坐標(biāo)是(1,-9),
          設(shè)直線CT的解析式是y=kx+b1
          ,
          解得,
          ∴直線CT的解析式是y=-x-8,
          拋物線向下平移兩個單位的解析式是y=x2-2x-8-2,
          即y=x2-2x-10,
          兩解析式聯(lián)立得,,
          解得,,
          ∴兩交點的坐標(biāo)是(-1,-7),(2,-10),
          欲使平移后的拋物線與線段EF只有一個公共點,則點F位于兩交點之間,且包含左邊交點,不包含右邊交點,
          ∴-1≤m<2,-10<n≤-7.
          點評:本題綜合考查了二次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)解析式,正方形的判定與性質(zhì),點的坐標(biāo),二次函數(shù)圖象與幾何變換,以及等腰梯形的性質(zhì),綜合性較強(qiáng),先求出拋物線的解析式是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過點D(0,
          7
          9
          3
          ),且頂點C的橫坐標(biāo)為4,該圖象在x軸上截得的線段AB的長為6.
          (1)求二次函數(shù)的解析式;
          (2)在該拋物線的對稱軸上找一點P,使PA+PD最小,求出點P的坐標(biāo);
          (3)在拋物線上是否存在點Q,使△QAB與△ABC相似?如果存在,求出點Q的坐標(biāo);如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,二次函數(shù)圖象的頂點為坐標(biāo)原點O,且經(jīng)過點A(3,3),一次函數(shù)的圖象經(jīng)過點A和點B(6,0).
          (1)求二次函數(shù)與一次函數(shù)的解析式;
          (2)如果一次函數(shù)圖象與y相交于點C,點D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點E,∠CDO=∠OED,求點D的坐標(biāo).
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點,與y軸交于點A(0,-3),∠ABC=45°,∠ACB=60°,求這個二次函數(shù)解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程,如圖的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與時間t(月)之間的關(guān)系(即前t個月的利潤總和s與t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
          (1)求累積利潤s(萬元)與時間t(月)之間的函數(shù)關(guān)系式;
          (2)求截止到幾月末公司累積利潤可達(dá)30萬元;
          (3)從第幾個月起公司開始盈利?該月公司所獲利潤是多少萬元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個點,根據(jù)圖象回答:(1)b
          0(填“>”、“<”、“=”);
          (2)當(dāng)x滿足
          x<-4或x>2
          x<-4或x>2
          時,ax2+bx+c>0;
          (3)當(dāng)x滿足
          x<-1
          x<-1
          時,ax2+bx+c的值隨x增大而減小.

          查看答案和解析>>

          同步練習(xí)冊答案