日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形。
          探究:(1)如圖甲,已知△ABC中∠C=90 °,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由。
          (2)一般地,“任意三角形都是自相似圖形”,只要順次連結三角形各邊中點,則可將原三分割為四個都與它自己相似的小三角形,我們把△DEF(圖乙)第一次順次連結各邊中點所進行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連結它的各邊中點所進行的分割,稱為2階分割(如圖2)……依次規(guī)則操作下去,n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設此時小三角形的面積為Sn。
          ①若△DEF的面積為1000,當n為何值時,3<Sn<4?
          ②當n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關系的等式(不必證明)
          解:(1) 正確畫出分割線CD (如圖,過點C作CD⊥AB,垂足為D,CD即是滿足要求的 分割線)
          理由:∵∠B = ∠B,∠CDB=∠ACB=90°
          ∴△BCD∽△ACB;
          (2)① △DEF 經N階分割所得的小三角形的個數(shù)為
          ∴S=
          當n=3時,S3= ≈15.62
          當n=4時,S4 =≈3.91
          當n=4時,3<S4<4;
          ②S2n= S×S。
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.
          探究:
          (1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.
          (2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點,則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點所進行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連接它的各邊中點所進行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設此時小三角形的面積為SN
          ①若△DEF的面積為10000,當n為何值時,2<Sn<3?(請用計算器進行探索,要求至少寫出三次的嘗試估算過程)
          ②當n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關系的等式.(不必證明)精英家教網

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•慶元縣模擬)定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.
          探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.
          (2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點,則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點所進行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連接它的各邊中點所進行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設此時小三角形的面積為Sn
          ①若△DEF的面積為1000,當n為何值時,3<Sn<4?
          (請用計算器進行探索,要求至少寫出二次的嘗試估算過程)
          ②當n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關系的等式(不必證明)

          查看答案和解析>>

          科目:初中數(shù)學 來源:2012屆浙江省麗水市慶元縣中考模擬數(shù)學試卷(帶解析) 題型:解答題

          定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.
          探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.
          (2)一般地,“任意三角形都是自相似圖形”,只要順次連結三角形各邊中點,則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連結各邊中點所進行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連結它的各邊中點所進行的分割,稱為2階分割(如圖2)……依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設此時小三角形的面積為Sn
          ①若△DEF的面積為1000,當n為何值時,3<Sn<4?
          (請用計算器進行探索,要求至少寫出二次的嘗試估算過程)
          ②當n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關系的等式(不必證明)

          查看答案和解析>>

          科目:初中數(shù)學 來源:2011-2012學年浙江省麗水市慶元縣中考模擬數(shù)學試卷(解析版) 題型:解答題

          定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.

          探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.

          (2)一般地,“任意三角形都是自相似圖形”,只要順次連結三角形各邊中點,則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連結各邊中點所進行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連結它的各邊中點所進行的分割,稱為2階分割(如圖2)……依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設此時小三角形的面積為Sn

          ①若△DEF的面積為1000,當n為何值時,3<Sn<4?

          (請用計算器進行探索,要求至少寫出二次的嘗試估算過程)

          ②當n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關系的等式(不必證明)

           

          查看答案和解析>>

          科目:初中數(shù)學 來源:2013年浙江省中考數(shù)學模擬試卷(五)(解析版) 題型:解答題

          定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.
          探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.
          (2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點,則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點所進行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連接它的各邊中點所進行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設此時小三角形的面積為Sn
          ①若△DEF的面積為1000,當n為何值時,3<Sn<4?
          (請用計算器進行探索,要求至少寫出二次的嘗試估算過程)
          ②當n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關系的等式(不必證明)

          查看答案和解析>>

          同步練習冊答案