日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】四個數(shù)分別是,滿足,(為正整數(shù),)

          .

          ①當(dāng)時,求的值;

          ②對于給定的有理數(shù),滿足,請用含的代數(shù)式表示;

          ,,且,試求的最大值.

          【答案】1)①;②;(2的最大值為.

          【解析】

          方法一:

          ①根據(jù)和絕對值的性質(zhì)去掉絕對值符號,再利用它們之間的關(guān)系即可得出答案;

          ②同樣先去掉絕對值符號,通過等量代換和第(1)問中的結(jié)論得出,則答案可得;

          同樣先將e,f去掉絕對值符號,然后表示出,然后利用建立一個關(guān)于n的不等式,解不等式即可找到答案.

          方法二:

          ①將四個數(shù)表示在數(shù)軸上,然后轉(zhuǎn)化已知條件為,然后利用兩點(diǎn)間的距離即可得出答案;

          ②用點(diǎn)表示數(shù)在數(shù)軸上表述出來,得出進(jìn)而得出則答案可得;

          直接將e,f代入得出,再利用得出,則答案可得.

          方法一:

          ,

          ,

          ,

          .

          ,即

          ,

          ,

          ,且為正整數(shù),

          的最大值為.

          方法二:

          ①把四個數(shù)在數(shù)軸上分別用點(diǎn)表示出來,如下圖所示,

          .

          用點(diǎn)表示數(shù)在數(shù)軸上表述出來,點(diǎn)在線段上,

          ,,且

          ,即

          ,且為正整數(shù),

          的最大值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校七年級全體學(xué)生在5名教師的帶領(lǐng)下去公園秋游,公園的門票為每人30.現(xiàn)有兩種優(yōu)惠方案,甲方案:帶隊(duì)老師免費(fèi),學(xué)生按8折收費(fèi);乙方案:師生都按7.5折收費(fèi).

          (1)若有n名學(xué)生,用含n的代數(shù)式表示兩種優(yōu)惠方案各需多少元?

          (2)當(dāng)n=70時,采用哪種方案更優(yōu)惠?

          (3)當(dāng)n=100時,采用哪種方案更優(yōu)惠?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算下列各題(直接寫出答案)

          12+(﹣2)=   ;

          213   

          3)(﹣1×(﹣3)=   ;

          412÷(﹣3)=   ;

          5)﹣32×   ;

          6)(﹣42018×(﹣0.252019   ;

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC中,AB=BC,ABC=120°,AC=2,OABC的外接圓,D是優(yōu)弧AmC上任意一點(diǎn)(不包括A,C),記四邊形ABCD的周長為y,BD的長為x,則y關(guān)于x的函數(shù)關(guān)系式是( 。

          A. y=x+4 B. y=x+4 C. y=x2+4 D. y=x2+4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD是平行四邊形,E、F是對角線AC上的兩點(diǎn),∠1=2.

          (1)求證:AE=CF;

          (2)求證:四邊形EBFD是平行四邊形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖四邊形ABCD、DEFG都是正方形,連接AE、CG.

          (1)求證AE=CG;

          (2)觀察圖形猜想AE與CG之間的位置關(guān)系,并證明你的猜想.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,∠C=90°,ACB的平分線交AB于點(diǎn)O,以O為圓心的⊙OAC相切于點(diǎn)D.

          (1)求證:⊙OBC相切;

          (2)當(dāng)AC=3,BC=6時,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義一種運(yùn)算:,其中k是正整數(shù),且k ≥2,[x]表示非負(fù)實(shí)數(shù)x的整數(shù)部分,例如[2.6]=2,[0.8]=0.若,則的值為( )

          A.2015B.4C.2014D.5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下面材料:

          小炎遇到這樣一個問題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BCCD上,∠EAF=45°,連結(jié)EF,則EF=BE+DF,試說明理由.

          小炎是這樣思考的:要想解決這個問題,首先應(yīng)想辦法將這些分散的線段相對集中.她先后嘗試了翻折、旋轉(zhuǎn)、平移的方法,最后發(fā)現(xiàn)線段AB,AD是共點(diǎn)并且相等的,于是找到解決問題的方法.她的方法是將△ABE繞著點(diǎn)A逆時針旋轉(zhuǎn)90°得到△ADG,再利用全等的知識解決了這個問題(如圖2).

          參考小炎同學(xué)思考問題的方法,解決下列問題:

          1)如圖3,四邊形ABCD中,AB=AD∠BAD=90°點(diǎn)E,F分別在邊BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,則當(dāng)∠B∠D滿足_ 關(guān)系時,仍有EF=BE+DF;

          2)如圖4,在△ABC中,∠BAC=90°AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°,若BD=1, EC=2,求DE的長.

          查看答案和解析>>

          同步練習(xí)冊答案